

Hard Probes 2012

A promise,

not a threat

5th international Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 27 May – 1 June 2012, Cagliari (Sardinia, Italy)

B. Mueller's challenge to the summary speakers:
(from his opening talk)

All's well that ends well.

1st slide of 69 a threat, not a promise

Experimental Summary

- completely fair and totally unbiased selection of all relevant results from ALICE (All Lhc and rhIC Experiments)
- sprinkled with random & irrelevant PR (Personal Remarks)

Many thanks to the organizers

who gave me this marvelous opportunity

to loose many old friends and make plenty new enemies

Care -

pp Results

p-A Results

A doubt of Shadowing

AA: Today's Menu

- Antipasti assorted delicacies
- Primo Piatto Quenched Jets
- Secondo Piatto
 Suppressed Quarkonia
- Dolce
 Electroweak probes
- Fattura Thermal radiation

Heavy lon physics is tricky

• We should first agree what we actually investigate !

HARD PROBES 2012 PROGRAMME

Parallel IB: Jet quenching and enerav loss

Parallel IVB: Jet auenchina and energy loss

Fortunately, Carlos did not schedule another instead-of-lunch round table discussion

Also RHIC had its..

Energy Loss ('Jet-quenching')

high energy partons loose energy ΔE when traversing a medium $(\mathsf{E}' = \mathsf{E} - \Delta \mathsf{E})$

??

 \Rightarrow jet(E) \rightarrow jet (E') + soft particles(Δ E)

Main Questions:

1) How much energy is lost? measure jet imbalance E - E' 2) Shows expected scaling ? vary L, m, E, .

3) Where (and how) is it lost? measure radiated energy ΔE

Main Observables:

 $\Delta E \sim f(m) \times c_a \times \hat{q} \times L^n \times f(E)$

Energy loss: The emerging jet Scaling: Heavy flavour etc.. Lost energy: Intermediate p_t

Universally accepted definition of significance:

<u>2-3 σ effect:</u>

Looks Interesting ?

Looks unlikely ?

=> hint/indication ('hindication')

=> consistent within errors

liberal use of the helpful and totally innocent 'line to guide the eye'

Precision Jet R_{CP}

On Balance

(The Holy Grail of jet-quenching)

Heavy Flavour leptons

There is more to compare to...

Going with the flow ?

Particle correlations

Interesting or Trivial ?

More soft modifications

Another Baryon(?) Anomaly

Mass (or n_q ?) **Matters** (up to a point)

V₂ to the limits

(that may be even odder)

Another interesting observation

- Whatever it is that makes v_2 in 3 < p_t < 8 GeV: $\sigma(v_2)/v_2$ = constant (5-30%)
 - ⇒ trivial for hydro: $\sigma(v_2)/v_2 \sim \sigma(\epsilon_2)/\epsilon_2 v_2 \sim \epsilon_2$ independent of p_t
 - \Rightarrow less trivial for quenching: (density weighted pathlength integral)ⁿ ~ ϵ

 $\cos(2\Phi_{2}^{}+4\Phi_{4}^{}-6\Phi_{6}))$

Nota Bene

Intermediate p_t (few - 10 GeV?)

Facts

⇒ Mass and/or flavour matter (PID results) up to (at least) ~8 GeV

• R_{AA}, v₂

Some associated particles are modified

✿ the 'tail & flat top', energy balance,

⇒ some aren't

- p/ π peak 'region', near & away side
- \Rightarrow whatever makes v₂, it has the **SAME** ~ linear dependence on ε as hydro flow

Fiction

- \Rightarrow n_q-scaling: **2/3 = recombination**
- \Rightarrow R_{AA} 'bump' around 3 GeV 'Cronin'

(RHIC/LHC: It's the hydro, stupid

the IM p_t region is important !

- that's were we find ΔE
- that's were we may find recombination

the IM p_t region is only <u>starting to be explored</u> experimentally

the IM p_t region is a <u>theoretical desert (or minefield)?</u>

Let's do something about it (and wear flak jackets)

Quarkonium suppression

• J/Ψ , the HP par excellence: 'well calibrated (pQCD) smoking gun'

Matsui & Satz, 1986:

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as obtained from lattice QCD, is compared with the J/ ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. It is concluded that J/ ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

Yes, we can !

$J/\Psi R_{AA}$: p_t dependence

CMS-ALICE puzzle solved

Welcome to the Upsilon Family

ConSequential Y suppression

41

Is the First Impression correct ?

Prophecy..

ElectroWeak: Clear Questions

Thermal Radiation

Hard Probes 2012

5th international Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 27 May – 1 June 2012, Cagliari (Sardinia, Italy)

• HP 2012: (my) Expectations versus Reality

Summary talk:	lousy	\checkmark
➡ Italian weather:	good	\checkmark
➡ Italian wine:	very good	
➡ Italian cuisine:	even better	\checkmark
➡ HP Organization:	Italian	\checkmark
⇒ HP physics:	excellent	V

