jet quenching theoretical and experimental aspects

Guilherme Milhano [CENTRA-IST Lisbon/CERN PH-TH]

Mateusz Ploskon [LBNL]

jets in vacuum

$$\sigma^{AB\to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij\to kl}(p_1 = x_1 P_1, p_2 = x_2 P_2, \alpha_s(\mu_R^2), Q^2/\mu_F^2, Q^2/\mu_R^2)$$

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}(p_1 = x_1 P_1, p_2 = x_2 P_2, \alpha_s(\mu_R^2), Q^2/\mu_F^2, Q^2/\mu_R^2)$$

- high-p_t processes result from interaction between parton constituents [quarks and gluons] of the incoming hadrons
- parton content of hadrons described by parton distribution functions [PDFs]
 - non-perturbative objects
 - scale [Q²] dependence driven [perturbatively] by DGLAP evolution
 - universal, determined from global data fits

$$\sigma^{AB\to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij\to kl}(p_1 = x_1 P_1, p_2 = x_2 P_2, \alpha_s(\mu_R^2), Q^2/\mu_F^2, Q^2/\mu_R^2)$$

- partonic cross section
 - does not depend on the details of the hadronic wave functions [factorization]
 - only involves high momentum transfers [short distance and time scales]; all low momentum scales in the PDFs
 - can be calculated to any order in perturbation theory

$$\sigma^{AB\to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_i^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij\to kl}(p_1 = x_1 P_1, p_2 = x_2 P_2, \alpha_s(\mu_R^2), Q^2/\mu_F^2, Q^2/\mu_R^2)$$

$$\sigma^{AB\to kl} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \hat{\sigma}^{ij\to kl}(p_1, p_2, \alpha_s(Q^2)) + \mathcal{O}(1/Q^2)$$

$$\sigma^{AB\to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij\to kl}(p_1 = x_1 P_1, p_2 = x_2 P_2, \alpha_s(\mu_R^2), Q^2/\mu_F^2, Q^2/\mu_R^2)$$

- what is factorized into the PDFs depends on the perturbative order to which partonic cross-section is calculated [must be done consistently :: always be suspicious of calculations that mix perturbative orders most likely they do not make sense]
- in principle three momentum scales [of the same order] are involved
 - \hookrightarrow factorization scale μ_F [separation between long- and short-distance physics] at which PDFs are evaluated
 - \longrightarrow renormalization scale μ_R at which the coupling is calculated
 - \longrightarrow hard scale Q^2 that characterizes parton-parton scattering
- the relation between these scales is fixed by higher order calculations :: to all orders the cross section does not depend on μ_F and μ_R
- a standard approximation is to take [at LO] $\mu_F = \mu_R = Q^2$:: their relative variation [by a factor 2, say] estimates theoretical uncertainty

$$\sigma^{AB\to kl} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \hat{\sigma}^{ij\to kl}(p_1, p_2, \alpha_s(Q^2)) + \mathcal{O}(1/Q^2)$$

branching of hard parton

outgoing [virtual] high-pt parton relaxes virtuality down to hadronization scale by branching

branching independent of parton's previous history [i.e. it also factorizes]

$$\sigma^{AB\longrightarrow X} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \hat{\sigma}_{ij \to k} \otimes D_{k \to X}(z, Q^2)$$

- fragmentation function [generic]

 probability distribution for po
 - probability distribution for parton k to result in 'state' X carrying fraction z of parton's momentum
 - encodes [perturbative] branching and [non-perturbative] hadronization
 - in principle depends on separate scale μ_{frag} [set here to Q²]

- X=parton
 - fragmentation function only includes parton branching
 - [perturbative] DGLAP-like evolution towards lower Q²
 - X=hadrons [or jets]
 - fragmentation function includes hadronization
 - constrained from global fits to data [since factorizable and universal] with evolution still driven by DGLAP [analogous to PDFs]
 - different in MC event generators
 - →evolution [branching] down to hadronization scale followed by hadronization prescription [Lund strings, cluster, local parton-hadron duality]

[perturbative] partonic branching

$$t\frac{\partial}{\partial t}D_i(x,t)\sum_{j}\int_{x}^{1}\frac{dz}{z}\frac{\alpha_s}{2\pi}P_{ji}(z)D_j(x/z,t)$$

evolution of the momentum fraction distribution of partons produced from original parton i resums multiple branchings to leading logarithmic order $O[(\alpha_s \log Q^2)^n]$

parton splitting function :: probability of parton i to come from splitting of parton j

probabilistic interpretation clearer from integral formulation [also useful for numerical MC implementation]

$$D(x,t) = \Delta(t)D(x,t_0) + \Delta(t) \int_{t_0}^t \frac{dt_1}{t_1} \frac{1}{\Delta(t_1)} \int \frac{dz}{z} P(z)D\left(\frac{x}{z},t_1\right)$$

$$\Delta(t) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha_s(t',z)}{2\pi} P(z,t')\right]$$

Sudakov form factor

ullet probability of no resolvable splitting between scales t_0 and t

branching + hadronization [pathway #1]

include hadronization in the definition of fragmentation functions

- scale evolution still DGLAP-like driven [as before]
- hadronization not understood from first principles
 - non-perturbative information in evolution initial conditions
 - constrained from data global fit

branching + hadronization [pathway #2]

Monte Carlo event generators [PYTHIA, HERWIG] proceed differently

- probabilistic implementation of evolution [parton shower] with the Sudakov form factors $\Delta(t) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha_s(t',z)}{2\pi} P(z,t')\right]$
- identification of colour singlet objects [strings, clusters]
 - \odot colour information tracked to $1/N_c$ accuracy [gluon = quark-antiquark pair]
 - hadronization by string-breaking/cluster decay
 - ▶ long strings/large mass clusters lead to increased and softer multiplicity
 - ▶ tuned to data :: 'reproduces' data extracted fragmentation functions

coherent branching

so far we have assumed that successive branchings are independent

however, interferences play an important role

- coherence between successive splittings results in suppression of radiation of 2nd gluon at angles larger than 1st emission angle :: angular ordering
 - large angle 2nd gluon emissions cannot resolve quark and gluon separately :: emitted as if from initial quark
 - gluon emission is colinearly singular :: dominated by strong hierarchy in emission angles
 - not the full story [also need energy-momentum conservation for full description] but qualitatively right

jet definition

the collimated spray of particles that results from the branching of the original hard parton and subsequent hadronization of the fragments

in order to **define** a jet, a set of rules on how to group particles into a jet and how to assign a momentum to the jet must be specified

:: properties of a good jet definition ::

- the same for experimental analysis, analytical partonic calculations and Monte Carlo simulations
- collinear safe [the emission of a collinear gluon does not change what is identified as a jet]
- IR safe [the emission of a soft gluon does not change the jet]
- is not sensitive to hadronization details

Infinities do not cancel

[Salam 2009]

jet resolution scale

the jet definition is completed by specifying a resolution scale [jet size]

different jet sizes result in a different number of jets

anti-kt jets

most commonly used [at present] jet algorithm [also in HIC]

define distance measures [R= 'jet cone radius]

$$d_{ij} = \min(1/p_{ti}^2, 1/p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
$$d_{iB} = 1/p_{ti}^2$$

sequentially recombine particles:

- 1. compute all d_{ij} and d_{iB}
- 2. find the minimum of the d_{ij} and d_{iB}
- 3. if it is a d_{ij} , recombine i and j into a single new particle and return to step 1.
- 4. otherwise, if it is a d_{iB} , declare i to a [final state] jet, and remove it from the list
- 5. stop when no particles remain

iet grows around hard seeds

collinear branchings clustered at the beginning

gives circular hard jets

Jets

- experimental aspects

Mateusz Ploskon

Jets in collider experiments

Optimum jet finder algorithm

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Jet finding - jet finders

Jets in collider experiments

Jets are fairly well known by now... and well described by theory and MC

JET composition

Measure a jet?

Need to have control over all components...

Measure or "know"

the [unknown] rest from DATA + MC

 $J(\overrightarrow{p}_{partons}) \approx J(\overrightarrow{p}_{shower}) \approx J(\overrightarrow{p}_{hadrons}) \approx J(\overrightarrow{p}_{cells/tracks})$

Jet: from parton to

detector

A Jet Detector

Improvements in jet reconstruction on detector level => Particle flow

Purely calorimeter jet vs. Particle Flow jet

Better response w.r.t.

calorimeter measurement

=> smaller jet-energy

corrections

Jet: energy scale & resolution

Width == Resolution

Control over

the two

crucial

in p-p and AA

collisions

JET: From Measured to

This is an experimental enterprise!

It is a substantial effort...

Control of the energy scale - ATLAS - linearity

Jet energy resolution

An example: proton-proton collisions

jet-medium interactions

— factorized description of hadron production at high-p_t in heavy ion collisions is a, phenomenological consistent, working assumption

$$\sigma^{AB\to h} \sim f_i^A(x_1, Q^2) \otimes f_i^B(x_2, Q^2) \otimes \sigma^{ij\to k} \otimes D_{k\to h}(z, Q^2)$$

factorized description of hadron production at high-p_t in heavy ion collisions is a,
 phenomenological consistent, working assumption

$$\sigma^{AB\to h} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \sigma^{ij\to k} \otimes D_{k\to h}(z, Q^2)$$

PDFs [initial state]

- universal, non-perturbative
- scale dependence from DGLAP evolution
- determined from global fits [eA, pA]
- control of nuclear modifications essential [cold nuclear matter effects]

of factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption

hard partonic collision process [pQCD]

• localized on point-like scale $[\sim 1/E_T]$ and thus oblivious to the surrounding QCD medium

factorized description of hadron production at high-pt in heavy ion collisions is a,
 phenomenological consistent, working assumption

— factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption

jet quenching :: the modifications effected on the propagating parton, and on its shower, by the QCD medium it traverses

dual role of jet quenching studies

dual role of jet quenching studies

- ultimately jet quenching studies [medium induced modifications of observed properties of high-p_t properties] allow for detailed characterization of produced medium
 - → high-p_t probes are created early
 - their production mechanism is under good theoretical control
 - they can traverse a significant in-medium path length
 - the observable consequences of probe-medium interactions encode detailed information on medium properties

dual role of jet quenching studies

- —o ultimately jet quenching studies [medium induced modifications of observed properties of high-pt properties] allow for detailed characterization of produced medium
 - → high-p_t probes are created early
 - their production mechanism is under good theoretical control
 - they can traverse a significant in-medium path length
 - the observable consequences of probe-medium interactions encode detailed information on medium properties

HOWEVER

- full potential as medium probes limited by theoretical understanding of the microscopic dynamics responsible for the observed modifications
 - iet quenching studies provide the necessary constraints on the dynamics

dual role of jet quenching studies

- —o ultimately jet quenching studies [medium induced modifications of observed properties of high-pt properties] allow for detailed characterization of produced medium
 - → high-p_t probes are created early
 - -> their production mechanism is under good theoretical control
 - they can traverse a significant in-medium path length
 - the observable consequences of probe-medium interactions encode detailed information on medium properties

HOWEVER

- full potential as medium probes limited by theoretical understanding of the microscopic dynamics responsible for the observed modifications
 - iet quenching studies provide the necessary constraints on the dynamics

what can conceivably happen to a jet that develops in the presence of a hot, dense and coloured medium?

jet-medium interactions [jet quenching]

induced radiation

- medium transfers momentum to jet components
 - :: increases splitting probability and broadens radiation
 - :: finite quark mass vetos small angle radiation [dead cone]
- medium disturbs coherence between successive splittings
 - :: modified angular pattern

K.Tywoniuk [Tue 12.15]

- A.Beraudo[Tue 11.45]

dynamics of emitted quanta

• transverse transport of all jet components

color exchanges with medium

- modified colour flow in the jet
 - :: affects hadronization irrespectively of where it occurs

medium response to jet propagation

• recoil, ...

.→ T.Renk [Tue 9.00]

modelling

- piecewise description
- first principle probabilistic or effective formulation for Monte Carlo implementation
- embedding in medium

observables

- jet quenching without jets
 - → hadronic spectra [R_{AA}, correlations, etc...]
 - in principle very sensitive to hadronization effects
- jet quenching with reconstructed jets
 - in principle less sensitive to hadronization details
 - mechanisms irrelevant for parton energy loss may play significant role
 - a gluon radiated from the hard parton is energy lost for that parton, but not necessarily so for that parton's jet

parton energy loss [schematic]

Brownian motion

$$\langle k_{\perp}^2 \rangle \sim \hat{q}L$$

accumulated phase

$$N_{coh} \sim \frac{t_{coh}}{\lambda}$$

$$N_{coh} \sim rac{t_{coh}}{\lambda} \qquad \qquad t_{coh} \sim rac{\omega}{k_{\perp}^2} \sim \sqrt{rac{\omega}{\hat{q}}}$$

1 parameter medium definition

— gluon energy distribution

$$\omega \frac{dI_{med}}{d\omega dz} \sim \frac{1}{N_{coh}} \omega \frac{dI_1}{d\omega dz} \sim \alpha_s \sqrt{\frac{\hat{q}}{\omega}} \qquad \text{non-abelian LPM}$$

— average energy loss

$$\Delta E = \int_0^L dz \int_0^{\omega_c} \omega d\omega \frac{dI_{med}}{d\omega dz} \sim \alpha_s \omega_c \sim \alpha_s \hat{q} L^2$$

in-medium parton propagation

medium as set of static localized scattering centres

nedium as set of static localized scattering centres
$$S_1(p',p) = \int d^4x \ \mathrm{e}^{i(p'-p)\cdot x} \ \bar{u}(p') \ igA^a_\mu(x) T^a \gamma^\mu \ u(p)$$

$$W(\mathbf{x}) = \mathcal{P} \exp\left[ig\int dx_+ A_-(x_+,\mathbf{x})\right]$$

eikonal propagation [parton energy much larger than medium kicks]

beyond, but close to, eikonal propagation [allow for transverse brownian motion] of radiated gluon

single gluon emission [BDMPS]

building block for parton energy loss calculation [modified splitting kernel]

$$\langle |\mathcal{M}_{a\to bc}|^{2} \rangle = \frac{g^{2}}{N^{2} - 1} 2 \operatorname{Re} \left[\frac{1}{k_{+}^{2}} \int_{x_{0+}}^{L_{+}} dx_{+} \int_{x_{+}}^{L_{+}} d\bar{x}_{+} \int d\mathbf{x} d\bar{\mathbf{x}} \ e^{i\mathbf{k}_{\perp}(\mathbf{x} - \bar{\mathbf{x}})} \times \right. \\ \left. \left\langle W_{aa_{1}}(\mathbf{0}, x_{0+}, x_{+}) T_{a_{1}b_{1}}^{c_{1}} \frac{\partial}{\partial \mathbf{y}} G_{c_{1}c}(\mathbf{y} = 0, x_{+}; \mathbf{x}, L_{+}) W_{b_{1}b}(\mathbf{0}, x_{+}, L_{+}) \times \right. \\ \left. W_{b\bar{b}_{1}}^{\dagger}(\mathbf{0}, \bar{x}_{+}, L_{+}) \frac{\partial}{\partial \bar{\mathbf{y}}} G_{c\bar{c}_{1}}(\bar{\mathbf{x}}, L_{+}; \bar{\mathbf{y}} = 0, \bar{x}_{+}) T_{\bar{b}_{1}\bar{a}_{1}}^{\bar{c}_{1}} W_{\bar{a}_{1}a}^{\dagger}(\mathbf{0}, x_{0+}, \bar{x}_{+}) \right\rangle - \\ \left. - \frac{2}{k_{+}} \frac{\mathbf{k}_{\perp}}{k_{\perp}^{2}} \int_{x_{0+}}^{L_{+}} dx_{+} \int d\mathbf{x} e^{i\mathbf{k}_{\perp} \mathbf{x}} \left\langle W_{aa_{1}}(\mathbf{0}, x_{0+}, x_{+}) T_{a_{1}b_{1}}^{c_{1}} \times \right. \\ \left. \frac{\partial}{\partial \mathbf{y}} G_{c_{1}c}(\mathbf{y} = 0, x_{+}; \mathbf{x}, L_{+}) \times W_{b_{1}b}(\mathbf{0}, x_{+}, L_{+}) T_{b\bar{a}_{1}}^{c_{1}} W_{\bar{a}_{1}a}^{\dagger}(\mathbf{0}, x_{0+}, L_{+}) \right\rangle \right] + \\ \left. + \frac{4g^{2}C_{R}}{k_{\perp}^{2}} \right.$$

medium averages

local in longitudinal space [scattering centres are independent, no colour in between them], only 2-point field correlator is relevant

$$\frac{1}{N} \text{Tr} \langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \rangle = \frac{1}{N} \text{Tr} \langle \exp\{-ig \int dx_{+} A_{-}^{\dagger}(x_{+}, \mathbf{x}_{\perp})\} \times \exp\{ig \int dx_{+} A_{-}(x_{+}, \mathbf{y}_{\perp})\} \rangle$$

expand Wilson lines, perform colour algebra, etc.

$$\frac{1}{N} \text{Tr} \langle W^{\dagger}(\mathbf{x}_{\perp}) W(\mathbf{y}_{\perp}) \rangle \simeq \exp \left\{ -\frac{C_F}{2} \int dx_{+} n(x_{+}) \sigma(\mathbf{y}_{\perp} - \mathbf{x}_{\perp}) \right\}$$

$$k_{+} \frac{dI}{dk_{+} d^{2} \mathbf{k}_{\perp}} = \frac{\alpha_{S} C_{R}}{(2\pi)^{2} k_{+}} 2 \operatorname{Re} \int_{x_{0+}}^{L_{+}} dx_{+} \int d^{2} \mathbf{x} \ e^{-i \mathbf{k}_{\perp} \cdot \mathbf{x}} \times \left[\frac{1}{k_{+}} \int_{x_{+}}^{L_{+}} d\bar{x}_{+} \ e^{-\frac{1}{2} \int_{x_{+}}^{L_{+}} d\xi n(\xi) \sigma(\mathbf{x})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{x}} \mathcal{K}(\mathbf{y} = 0, x_{+}; \mathbf{x}, \bar{x}_{+}) - 2 \frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \cdot \frac{\partial}{\partial \mathbf{y}} \mathcal{K}(\mathbf{y} = 0, x_{+}; \mathbf{x}, L_{+}) \right] + \frac{\alpha_{S} C_{R}}{\pi^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}}$$

$$\mathcal{K}\left(\mathbf{r}(x_{+}), x_{+}; \mathbf{r}(\bar{x}_{+}), \bar{x}_{+}\right) = \int \mathcal{D}\mathbf{r} \exp\left[\int_{x_{+}}^{\bar{x}_{+}} d\xi \left(i\frac{p_{+}}{2}\dot{\mathbf{r}}^{2} - \frac{1}{2}n(\xi)\sigma(\mathbf{r})\right)\right]$$

numerics

→ energy loss of leading parton → longitudinal softening

 \hookrightarrow k_t broadening

opacity expansions

- it is often useful to perform calculation in the opacity expansion [GLV]
 - this is an expansion on [medium extent/elastic mean free path]
 - in practical terms it corresponds to allowing for a finite total number of medium interactions
 - → N=1 opacity is then

- → much simpler framework
- captures essential features

a whole lot left to say...

Heavy-ion collisions

Energy density: RHIC to LHC

LHC > 2.5 × RHIC

... within a volume (per nucleon)

Hadron production in heavy-ion collisions

A slight digression...

Much more baryons than mesons in central collisions as compared to proton-proton (coalescence/recombination? bulk+jet?)

LHC similar to RHIC

Maximum at slightly higher-pT

thermal

Hadronization of bulk+hard - parton coalescence

Recombination of thermal ('bulk') partons produces baryons at larger p_T

Recombination enhances baryon/meson ratio

Note also: v₂ scaling

The probes

jet suppression (quenching)

charm/bottom dynamics

 $J/\psi & \Upsilon$

color-less particles

Jets in heavy-ion collisions RHIC & LHC

LHC + RHIC: QCD evolution of jet quenching?

Vary energy of the jet:

LHC: Vary the scale with which QGP is probed (a la DIS) Compare and contrast RHIC and LHC

Jets in heavy-ion collisions RHIC & LHC

Jets in heavy-ion environment - few experimental notes:

- large combinatorial backgrounds (especially at RHIC)
- energy within an event varies from point to point ("fluctuations")
- a plus for LHC is larger kinematic reach abundance of highenergy jets (higher-pT measurements less affected by backgrounds)
 - => various approaches among experiments for background suppression AND/OR jet energy-resolution corrections
- is there an optimal jet definition for heavy-ion collisions (?)
 - => use multiple jet algorithms (?); sub-jets (?); filtering (?)
- jets are reported on the particle (generator) level hadronization corrections (to the "parton" jet) in HI collisions impossible

Jets in heavy-ion collisions RHIC & LHC

LHC

RHIC

Jets in heavy-ion environment - few experimental notes:

- large combinatorial backgrounds (especially at RHIC)
- energy within an event varies from point to point ("fluctuations")
- a plus for LHC is larger kinematic reach abundance of highenergy jets (higher-pT measurements less affected by backgrounds)
 - => various approaches among experiments for background suppression AND/OR jet energy-resolution corrections
- is there an optimal jet definition for heavy-ion collisions (?)
 - => use multiple jet algorithms (?); sub-jets (?); filtering (?)
- jets are reported on the particle (generator) level hadronization corrections (to the "parton" jet) in HI collisions impossible

"Easier" (than full jet reconstruction) exercise: Jet-quenching via leading hadrons

Inclusive hadron production

Measured as a function of collision centrality

Note on correlations: interesting tool to study the "intermediate"-pt region - jets vs flow and recombination

Di-hadron correlations

Rates of recoil ("away-side") hadrons suppressed

Hadron Suppression

Nuclear modification factor:

RAA =

#(particles observed in AA collision per N-N (binary) collision)

#(particles observed per p-p collision)

"No effect" case is for RAA = 1

at high pT where hard processes dominate

RAA for different particle type

Is parton energy loss different for gluons, light-quarks and heavy-quarks?

Expectation: $\Delta E_g > \Delta E_{light-g} > \Delta E_{heavy-g}$

Casimir (color factor)
- gluons "glue" better to
the medium than quarks

"Dead-cone" effect:

mass of the parent quark

=> radiation for angles 0 < m/E

is suppressed

=> RAPIONS < RAP - MESONS < RAP - MESONS

RAA for different particle type

Discussion based on LHC results

Similar suppression for heavier-q (strange, charm) and gluons (large elastic e-loss; less dep. on mass?; color factor? - small effect?)

J/V from B-decays - dead cone effect?

Lambda vs KO RAA below 7 GeV manifestation of flow (?)

Rise towards higher pT's:

- 1) Harder partonic spectrum (as compared to RHIC)
- 2) Weak dependence of [pQCD] e-loss on parton energy

Not shown but measured:

Photons and Z's not suppressed ->

quenching is a final state effect

So, why bother with full jet reconstruction in heavy-ion collisions?

R_{AA} and correlations of leading hadrons provide constraints on density of the medium (ghat), however do not tell us about the *parton* energy loss and its dynamics; leading hadrons are biased towards jets that interact little or not at all with the medium

So called Surface bias:

requesting a high-pT

particle selects a

population of jets close to

surface of the medium
these jets interact only

little (or not at all) with

the medium

=> full jet reconstruction premise: integrate over the hadronic degrees of freedom; better access to the parton energy scale; dynamics of the jet quenching (?); other promising observables: gamma-jet correlations

HI jet finding: dealing with the background energy

A single event: all particles clustered ("assigned") to a jet

Many of these objects are simply background

Energy of the signal jets overestimated due to background energy

>> several possibilities to subtract the average background and/or

suppress the background particles [and background jets]

Must correct for remaining residual energy resolution

- magnitude of the correction is related to the background fluctuations - jet Area : small R (area) - smaller correction

Jet reconstruction in HI collisions: Background fluctuations: characterized by δ pt; spectrum before corrections

Background corrections

in Atlas

- Reconstruction algorithm anti-k₁ (0.2, 0.4).
- Input: calorimeter towers 0.1 x 0.1 (Δη x Δφ).
- Event-by-event background subtraction: $E_{Tsub}^{cell} = E_{T}^{cell} \rho^{layer}(\eta) \times A^{cell}$
- → Anti-k, reconstruction prior to a background subtraction.
- Underlying event estimated for each longitudinal layer and η slice separately.
- We exclude jets with $D = E_{T \, tower}^{max} / \langle E_{T \, tower} \rangle > 4$ to avoid biasing subtraction from jets but no jet rejection based on D.
- Iteration step to exclude jets with E_{τ} > 50 GeV from background estimation. Jets corrected for flow contribution.

Background subtraction / jet energy corrections (CMS)

PF pseudo-tower

η strip

a) Event-by-event subtraction of the heavy-ion background

- Reconstructed particles towered into an (η,ϕ) grid according to HCAL cell dimensions
- Mean tower energy and dispersion are calculated for each η strip
- Same iterative background subtraction applied in [0], described in [1]
- Random cone studies: good agreement between background fluctuations in data and HYDJET simulations
- The effect of quenching on the energy scale is constrained using the jet associated charged particle spectra
- b) Jet energy corrections (JEC) based on GEANT simulation of PYTHIA jets
- c) Validation of the BG subtraction + JEC for PYTHIA jets embedded in HYDJET

discussion of measurements

Jet R Central-Peripheral

RCP: similar as RAA, but denominator are not yields from proton-proton but from peripheral heavy-ion collisions

Flat! - in contrast to RAA of hadrons

 $R_{CP} \sim 0.5 = 7$ suppression - jets loose energy in most central events - the radiation is not captured within the jet cone (R)

LHC: Di-jet asymmetry

$$A_{J} \equiv \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

di-jet asymmetry: where does the

The momentum difference balanced by low-pT particles

di-jet asymmetry: where does the energy go?

The low-pT particles "balancing" the lost energy appear at large angles wrt recoil jet

Recoil jet (2) energy-loss as a pt,2 > 30 GeV/c function of trigger jet (1) pt

Ratio follows the PYTHIA+HYDJET reference with the same rate - constant offset over 200 GeV in pt

Modified jet fragmentation - an expectation from jet quenching

$$\xi = ln(E_{jet}/p_{hadron})$$

Jet fragmentation in Heavy-ion collisions

CMS observation: Fragmentation of jets that lost energy consistent with jet fragmentation in proton-proton (vacuum) - similar observations by ATLAS - a question: is the particle composition of the jet modified?

Photon-jet

Photon($\Delta \varepsilon = 0$) - jet ($\Delta \varepsilon > 0$)

Photon(DE=0)-jet(DE>0)

The asymmetry ratio $x_{J\gamma} = p_{\rm T}^{\rm Jet}/p_{\rm T}^{\gamma}$ is used to quantify the photon+jet momentum imbalance.

Thanks!

- For graphics/slides from: P. Govoni, M. Nguyen, T.
 Hemmick, P. Jacobs, M. van Leeuwen, J. Putschke,
 C. Roland, M. Rybář, I. Wingerter
- For the material by collaborations: ALICE, ATLAS,
 CMS, PHENIX, STAR

Nuclear geometry - Glauber model and hard processes

Nuclear thickness function

Inelastic cross section for p+A:

Normalized nuclear density r(b,z):

$$\int dz \, db \, \rho(b, z) = 1$$

$$T_{A}(b) = \int_{-\infty}^{\infty} dz \, \rho(b,z)$$

$$\sigma_{pA}^{inel} = \int d\vec{b} \left(1 - \left[1 - T_A(b) \sigma_{NN}^{inel} \right]^A \right)$$

Glauber scaling: hard processes with large momentum transfer

- short coherence length \Rightarrow successive NN collisions independent
- p+A is incoherent superposition of N+N collisions

$$\sigma_{pA}^{hard} \approx A \sigma_{NN}^{hard} \int d\vec{b} T_A (\vec{b}) = A \sigma_{NN}^{hard}$$

Glauber scaling of hard processes

Di-jet asymmetry

The fractional imbalance:

- grows with collision centrality and reaches a much larger value than in PYTHIA or PYTHIA+DATA
- clearly visible even for the highest-p_T jets observed in the data set
- the $p_{T,1}$ dependence of the excess imbalance is compatible with either a constant difference or a constant fraction of $p_{T,1}$.

Jet-hadron coincidences

Figure 2. The awayside I_{AA} (left) and D_{AA} (right) indicate a softening of the awayside jet for three reconstructed jet energy ranges. The awayside D_{AA} shows that high- p_T^{assoc} suppression is compensated for by low- p_T^{assoc} enhancement.

Background subtraction

$$p_T^{jet} = p_T^{cluster} - \rho \times Area$$

$$p_T^{jet} = p_T^{true} \otimes \delta \rho$$

- ρ: median pT per unit area of the diffuse background in an event – measured using background "jets" as found by kT algorithm
- A: area of the jet measured using number of artificially injected infinitely soft particles of finite "size" into an event that are clustered into the jet
- $\delta \rho$: uncertainty due to noise fluctuations non-uniformity of the event background

M. Cacciari, G. Salam, G. Soyez JHEP 0804:063,2008. e-Print: arXiv:0802.1189 [hep-ph] M. Cacciari, G.Salam Phys.Lett.B659:119-126,2008. e-Print: arXiv:0707.1378 [hep-ph]

RAA wrt reaction plane

Suppression out-of-plane stronger <= longer in-medium path length - significant effect even at 20 GeV/c

=> Path length dependence of energy loss ?

Additional constraints to energy loss models (?)

- **similar** information from v2 at high p_T

$$R_{AA}(\varphi) = R_{AA}(1 + 2v_2 \cos 2(\varphi - \psi))$$

High-pt hadrons: quantitative analysis

Reasonably self-consistent fit of independent observables Main limitation is the accuracy of the theory...