COHERENCE AND BROADENING EFFECTS IN MEDIUM INDUCED GLUON RADIATION

Mauricio Martínez

Hard Probes 2012 27 May - June 2, Cagliari (Sardinia, Italy)

N. Armesto, H. Ma, Y. Mehtar-Tani and C. Salgado Work in progress

Color coherence in vacuum

Fragmentation functions

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USU SC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USU SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Angular ordering in Initial State Radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

First steps towards understanding coherence in a QCD medium

 m_D^-

 r_{\perp}

 m_{D}^{-1}

Dilute medium

• Massless antenna:

Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, PRL 106 (2011) 122002, JHEP 1204 (2012) 064.

• Massive antenna:

A.Armesto, H. Ma, Y. Mehtar-Tani, C. Salgado and K.Tywoniuk, JHEP (2012) 109.

Opaque dense medium

• Massless antenna:

Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, PLB 707 (2012), 156.

Y. Mehtar-Tani and K. Tywoniuk, arXiV:1105.1346.

- J. Casalderrey and E. Iancu, JHEP 1108 (2011) 015.
- Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, arXiv: 1205.5739

⇒ K. Tywoniuk and Y. Mehtar-Tani's talks

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Coherence effects and medium modifications to the initial state radiation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Setup

• The QCD medium starts after the hard scattering

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Setup

• The QCD medium starts after the hard scattering • Eikonal approximation: $E\gg\omega\gg k_{\perp}$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Setup

- The QCD medium starts after the hard scattering
- Eikonal approximation: $E \gg \omega \gg k_{\perp}$
- Dilute medium (N=I opacity)

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

The medium induced gluon spectrum

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Reshuffling of the off shell incoming parton

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

The medium induced gluon spectrum

Reshuffling of the off shell incoming parton

$$\omega \frac{dN^{\text{med}}}{d^3 \vec{k}} = \frac{4 \alpha_s C_F \hat{q}}{\pi} \int \frac{d^2 q}{(2\pi)^2} \mathcal{V}^2(q) \int_0^{L^+} dx^+ \left[\underbrace{\frac{1}{(\kappa - q)^2} - \frac{1}{\kappa^2}}_{\frac{\kappa}{2}} \right] \\ + 2 \underbrace{\frac{\bar{\kappa} \cdot q}{\bar{\kappa}^2 (\bar{\kappa} - q)^2} \left(1 - \cos\left[\frac{(k_\perp - q)^2}{2k^+} x^+\right] \right) \\ - 2 \left\{ L \cdot \frac{\bar{\kappa}}{\bar{\kappa}^2} + \bar{L} \cdot \frac{(\kappa - q)}{(\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right) \right\} \right] \\ \underbrace{\frac{1}{2k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{(k - q)^2}{2k^+} x^+\right] \right)}_{Int.} \\ \underbrace{\frac{1}{k^2 (\kappa - q)^2} \left(1 - \cos\left[\frac{($$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

The medium induced gluon spectrum

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

SC The medium induced gluon spectrum: Incoherent limit

$$\omega \left. \frac{dN^{med}}{d^3 \vec{k}} \right|_{\tau_f < L} = \frac{4\alpha_s C_F \hat{q}}{\pi} \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \mathcal{V}(\mathbf{q}) \int_0^{L^+} dx^+ \left\{ \bar{\mathbf{L}}^2 + \mathcal{C}^2(\kappa - q) - \mathcal{C}^2(\kappa) \right\}$$
$$\bar{L} = \frac{\bar{\kappa} - q}{(\bar{\kappa} - q)^2} - \frac{\bar{\kappa}}{\bar{\kappa}^2}$$
$$\mathcal{C}(\kappa) = \frac{\kappa}{\kappa^2} - \frac{\bar{\kappa}}{\bar{\kappa}^2}$$
$$\mathcal{C}(\kappa - q) = \frac{\kappa - q}{(\kappa - q)^2} - \frac{\bar{\kappa} - q}{(\bar{\kappa} - q)^2}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

SC The medium induced gluon spectrum: Incoherent limit

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

SC The medium induced gluon spectrum: Incoherent limit

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

SC UNIVERSIDATE DE COMPOSTELA The medium induced gluon spectrum: Incoherent limit

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The medium induced gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \left. \frac{dN^{med}}{d^3 \vec{k}} \right|_{\omega \to 0} = \frac{\alpha_s C_F}{(2\pi)^2} \,\Delta_{med} \left(2\mathcal{J} - \mathcal{R}_{in} \right)$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The medium induced gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \left. \frac{dN^{med}}{d^3 \vec{k}} \right|_{\omega \to 0} = \frac{\alpha_s C_F}{(2\pi)^2} \Delta_{med} \left(2\mathcal{J} - \mathcal{R}_{in} \right)$$
$$\Delta_{med} = \frac{\hat{q} L^+}{m_D^2} \approx \frac{L}{\lambda}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The medium induced gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \frac{dN^{med}}{d^{3}\vec{k}}\Big|_{\omega \to 0} = \frac{\alpha_{s} C_{F}}{(2\pi)^{2}} \Delta_{med} (2\mathcal{J} - \mathcal{R}_{in})$$
$$\Delta_{med} = \frac{\hat{q} L^{+}}{m_{D}^{2}} \approx \frac{L}{\lambda}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The medium induced gluon spectrum: Soft limit and probabilistic interpretation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

JSC The full gluon spectrum: Soft limit and probabilistic interpretation

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The full gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \frac{dN^{\text{tot}}}{d^3 \vec{k}} \Big|_{\omega \to 0} = \omega \frac{dN^{\text{vac}}}{d^3 \vec{k}} \Big|_{\omega \to 0} + \omega \frac{dN^{\text{med}}}{d^3 \vec{k}} \Big|_{\omega \to 0}$$
$$= \frac{\alpha_s C_F}{(2\pi)^2} (\mathcal{P}_{in} + \mathcal{P}_{out})$$

$$\mathcal{P}_{in} = \left(1 - \Delta_{med}\right) \left(\mathcal{R}_{in} - \mathcal{J}\right)$$

$$\mathcal{P}_{out} = \mathcal{R}_{out} - \left(1 - \Delta_{med}\right)\mathcal{J}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The full gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \frac{dN^{\text{tot}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} = \omega \frac{dN^{\text{vac}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} + \omega \frac{dN^{\text{med}}}{d^{3}\vec{k}}\Big|_{\omega \to 0}$$
$$= \frac{\alpha_{s} C_{F}}{(2\pi)^{2}} (\mathcal{P}_{in} + \mathcal{P}_{out})$$

 $\mathcal{P}_{in} = (1 - \Delta_{med}) (\mathcal{R}_{in} - \mathcal{J}) \xrightarrow{\mathsf{Reduction of coherent gluon}} \text{Reduction of the initial state}$

$$\mathcal{P}_{out} = \mathcal{R}_{out} - \left(1 - \Delta_{med}\right)\mathcal{J}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC The full gluon spectrum: Soft limit and probabilistic interpretation

$$\omega \frac{dN^{\text{tot}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} = \omega \frac{dN^{\text{vac}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} + \omega \frac{dN^{\text{med}}}{d^{3}\vec{k}}\Big|_{\omega \to 0}$$
$$= \frac{\alpha_{s} C_{F}}{(2\pi)^{2}} (\mathcal{P}_{in} + \mathcal{P}_{out})$$

 $\mathcal{P}_{in} = (1 - \Delta_{med}) (\mathcal{R}_{in} - \mathcal{J}) \xrightarrow{\mathsf{Reduction of coherent gluon}} \text{Reduction of the initial state}$

$$\mathcal{P}_{out} = \mathcal{R}_{out} - \left(1 - \Delta_{med}\right) \mathcal{J} \quad \blacksquare$$

Partial decoherence of the final state

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

USC UNIVERSIDATE Soft limit and probabilistic interpretation

$$\omega \frac{dN^{\text{tot}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} = \omega \frac{dN^{\text{vac}}}{d^{3}\vec{k}}\Big|_{\omega \to 0} + \omega \frac{dN^{\text{med}}}{d^{3}\vec{k}}\Big|_{\omega \to 0}$$
$$= \frac{\alpha_{s} C_{F}}{(2\pi)^{2}} (\mathcal{P}_{in} + \mathcal{P}_{out})$$

$$\mathcal{P}_{in} = (1 - \Delta_{med}) (\mathcal{R}_{in} - \mathcal{J}) \xrightarrow{\mathsf{Reduction of coherent gluon}} \text{Reduction of the initial state}$$

$$\mathcal{P}_{out} = \mathcal{R}_{out} - \left(1 - \Delta_{med}\right) \mathcal{J} \implies$$

Partial decoherence of the final state

Valid as far as $\omega \theta_{qq}, k_{\perp} \ll m_D \Rightarrow$ Setting the scale !!

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

Conclusions and outlook

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

 We study interferences between initial and final state radiation in a QCD medium.

• A probabilistic interpretation is found in the incoherent and soft limit of the gluon spectrum.

Future work (stay tuned):

Numerical results for the dilute regime case
Analytical studies for an opaque medium (multiple scatterings).

Over the second studies of the second studies of the second studies...

Backup slides

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

GLV Spectrum

$$\omega \frac{dN_q^{\text{GLV}}}{d\omega d^2 k_{\perp}} = \frac{8\,\alpha_s C_F\,\hat{q}}{\pi} \int \frac{d^2 q_{\perp}}{(2\pi)^2} \int_0^L dt\, \frac{1 - \cos\frac{(k_{\perp} - q_{\perp})^2}{2\omega} t}{(q_{\perp}^2 + \mu_D^2)^2} \frac{k_{\perp} \cdot q_{\perp}}{k_{\perp}^2 (k_{\perp} - q_{\perp})^2}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"

GLV Spectrum

$$\omega \frac{dN_q^{\text{GLV}}}{d\omega d^2 k_{\perp}} = \frac{8\,\alpha_s C_F\,\hat{q}}{\pi} \int \frac{d^2 q_{\perp}}{(2\pi)^2} \int_0^L dt\, \frac{1 - \cos\frac{(k_{\perp} - q_{\perp})^2}{2\omega} t}{(q_{\perp}^2 + \mu_D^2)^2} \frac{k_{\perp} \cdot q_{\perp}}{k_{\perp}^2 (k_{\perp} - q_{\perp})^2}$$

Incoherent limit: $\tau_f \ll L$

$$\omega \left. \frac{dN_q^{\text{GLV}}}{d\omega d^2 k_\perp} \right|_{\tau_f \ll L} = \frac{4 \alpha_s C_F \,\hat{q} L^+}{\pi} \int_{\mathcal{V}(\mathbf{q})} \left[\mathbf{L}^2 + \frac{1}{(\mathbf{k} - \mathbf{q})^2} - \frac{1}{\mathbf{k}^2} \right]$$

Induced radiation of an asymptotic color charge
(Gunion- Bertsch)
Bremstrahlung of an accelerated color charge

$$\mathbf{L}^2 = rac{\mathbf{q}^2}{\mathbf{k}^2(\mathbf{k}-\mathbf{q})^2}$$

Mauricio Martínez "Coherence effects and broadening in medium induced radiation"