Measurement of isolated prompt photon production in lead-lead collisions at

√SNN=2.76 TeV with ATLAS

Peter Steinberg, for the ATLAS Collaboration Brookhaven National Laboratory May 29, 2012 Hard Probes 2012, Cagliari, Italy

Prompt photons in nuclear collisions

- Photons are penetrating probes of the hot, dense medium
 - Photon jet correlations will be an important contribution to understanding of jet quenching
- Important to check rates of photon production, calculable in pQCD @ NLO
 - Diagrams include direct photons & photons from jet fragmentation
- Fragmentation contributions reduced using "isolation" condition
 - Require a maximum energy in a cone R<R_{iso} around photon
- Modification of spectra expected from nPDF effects (e.g. shadowing, antishadowing)₂

The ATLAS Detector

Integrated luminosity for 2011 Pb+Pb run

166 μb⁻¹ delivered, 158 μb⁻¹ recorded by ATLAS

Data sample

- Using 133 μb⁻¹ of 2011 lead-lead LHC run
 - Detailed calibration of luminosity scale to accepted minimum bias events (in a special data stream) gives a total of 755M events with <1% precision for 0-80% centrality
- Special selection of events trigged on 16 GeV EM cluster, with a photon or electron reconstructed offline with E_T>40 GeV
 - From PYTHIA+HIJING simulations, 98% efficient for photon p_T>45 GeV
- Underlying event (UE) is removed from every calorimeter cell
 - Identical algorithm to that used for ATLAS jet analysis
 - Iterative elliptic-flow-sensitive subtraction performed in slices of $\Delta \eta$ =0.1, after excluding regions around R=0.2 jets >25 GeV and R=0.4 track jets >10 GeV
- Standard ATLAS photon & electron ("eGamma") reconstruction then applied to full set of UE-subtracted calorimeter cells

Photon reconstruction

- Photon reconstruction is seeded by calorimeter clusters of at least 2.5 GeV
 - Sliding window algorithm applied in 2nd sampling layer, which gets >50% of photon energy.
- No conversion recovery is applied: all photons treated as unconverted.
 - High energy converted photons deposit most energy in only a slightly wider φ region than photons
- Energy measurement is made using all three layers
 - Area is 3x5 layer-2 cells (each cell is $\Delta \eta x \Delta \varphi \sim 0.025 \times 0.025$)
 - Background subtraction gives corrections of O(1 GeV) even in central events

"Tight" photons

Photons are selected using 9 shower shape variables in $|\eta|$ <1.3

Second layer

 Containment in η and φ, using uniform segmentation

First layer

 Detailed shower shape in η direction, allowing selection of very narrow clusters & rejection of neutral hadron decays from jets

Hadronic section

 Measurement of hadronic energy associated with the cluster to reject jets

Details of full set of variables in extra slides

Centrality selection

Centrality defined by ΣE_T in ATLAS forward calorimeter (FCal) $3.2 < |\eta| < 4.9$

FCal ΣE_T shape established to be identical to 2010 (after known 4.1% rescaling), where efficiency relative to total cross section known to be **98±2%**

 $FCal \Sigma E_{T} [TeV]$

Uncertainties on geometric parameters include cross section & Glauber uncertainties

Bin	ΣE_{T} range	$\langle N_{\rm part} \rangle$	Error	$\langle N_{\rm coll} \rangle$	Error	$\langle T_{\rm AA} \rangle$	Error
0-10%	2.31-4 TeV	356	0.7%	1500	8%	23.4	3.0%
10-20%	1.57-2.31 TeV	261	1.4%	923	7%	15.1	3.1%
20-40%	0.66-1.57 TeV	158	2.5%	441	7%	6.88	5.2%
40-80%	0.044-0.66 TeV	45.9	6%	77.8	9%	1.22	9.4%

Photon performance: resolution

Energy resolution for photons in PYTHIA+HIJING samples.

Fits to $\sigma(E_T)/E_T = a \oplus b/\sqrt{E_T} \oplus c/E_T$

For photon energy range considered, $p_T > 45$ GeV, photon energy resolution ~3% or less

Photon performance: shower shapes

Comparison of tight photons with fully simulated photon+jet events, total MC (yellow), unconverted (blue), and converted (red) photons. Small p_T and η dependent shifts (from pp) applied to MC.

Isolation distributions E_T(R_{iso}=0.3)

Sum of transverse energy within R=0.3 cone EM energy in 5x7 cells removed to remove photon

Normalized here for $E_T(R=0.3) < 0$ GeV - good data & MC agreement In MC, width of distribution in 0-10% photon+jet events is ~6 GeV

Double sideband technique: ideal

"ABCD" method previously used for prompt photon measurements in ATLAS (& SUSY, etc.)

Two-dimensional distribution: **Isolation** vs.**purity**

"Non-tight" photon candidates fail subset of cuts: enhance jets

The ratio $N_{\text{C}}/N_{\text{D}}$ provides information on background A, given the number of counts in B

$$N^{\text{sig}} = N_A^{\text{obs}} - N_B^{\text{obs}} \frac{N_C^{\text{obs}}}{N_D^{\text{obs}}}$$

Double sideband technique: in practice

Fluctuations in photon response lead to signal contamination into regions BCD

Use MC to extract "leakage factors" $(c_X = N^{sig}_X/N^{sig}_A)$

Quadratic equation for N^{sig}A, solved numerically and statistical uncertainties of data and MC counts fully propagated

$$N_A^{\text{sig}} = N_A^{\text{obs}} - \left(N_B^{\text{obs}} - c_B N_A^{\text{sig}}\right) \frac{\left(N_C^{\text{obs}} - c_C N_A^{\text{sig}}\right)}{\left(N_D^{\text{obs}} - c_D N_A^{\text{sig}}\right)}$$

Photon performance: energy scale

Photon energy scale correction (Δp_T/p_T) for tight & isolated from PYTHIA+HIJING as function of reconstructed photon energy

In PYTHIA+HIJING scale good to 1.5% or better (typically O(.5%)): Include 3% systematic uncertainty from testbeam studies

Efficiency

- Measured relative to isolated photons in PYTHIA (6 GeV @ hadron level)
- Efficiency is product of reconstruction efficiency, identification efficiency & isolation efficiency
 - Isolation efficiency is probability of truth photon passing isolation cut

Purity extracted from double-sidebands

1-Purity = $1-N^{sig}_A/N^{obs}_A$ is the % correction applied to the number of measured counts to remove di-jet background: 20-30% in low p_T bins.

Limited data and MC statistics induce fluctuations. in higher-p_⊤ bins. Negative (1-P) results from limited statistics.

Systematic uncertainties

Source	Effect on yield		
Tight cut definition	20%		
Non-tight definition	3%		
Isolation criterion	20%		
Energy scale	12%		
Unfolding	3%		
Event counting	1%		
Total	31%		

Total uncertainty on photon yield estimated at 31%, assigned independent of p_T and centrality

ATLAS photon yields for 45<p⊤<200 GeV

For R=0.3, $E_T<6$ GeV

$$\frac{1}{N_{\text{evt}}} \frac{dN_{\gamma}}{dp_{\text{T}}} (p_{\text{T}}, c) = \frac{N_A^{\text{sig}}}{\epsilon_{\text{tot}} \times N_{\text{evt}} \times \Delta p_{\text{T}}}$$

For each centrality and p_T bin, extracted signal counts scaled by

- total efficiency
- number of events
 - width of p_T bin

then scaled by $\langle T_{AA} \rangle$

CMS pp & PbPb @ 2.76 TeV
JETPHOX 1.3 E_T(R=0.3)< 6 GeV
& PYTHIA MC11 tune
shown for comparisons

ATLAS photon yields for 45<p⊤<200 GeV

For R=0.3, E_T <6 GeV

$$\frac{1}{N_{\text{evt}}} \frac{dN_{\gamma}}{dp_{\text{T}}} (p_{\text{T}}, c) = \frac{N_A^{\text{sig}}}{\epsilon_{\text{tot}} \times N_{\text{evt}} \times \Delta p_{\text{T}}}$$

For each centrality and p_T bin, extracted signal counts scaled by

- total efficiency
- number of events
 - width of p_T bin

then scaled by $\langle T_{AA} \rangle$

CMS pp & PbPb @ 2.76 TeV JETPHOX 1.3 $E_T(R=0.3)$ < 6 GeV & PYTHIA MC11 tune shown for comparisons

Ratios relative to JETPHOX

- Comparisons of lead-lead data with pp cross sections from JETPHOX 1.3.0
 - CTEQ 6.6 PDFs
 - BFG fragmentation functions
 - No isospin or nPDFs included
 - Scale uncertainties (factor of 2 coherent variation of μ_{I,F,R}): ±13%
 - PDF uncertainties at 7 TeV: ±5%
- Equivalent to R_{AA}, but with MC reference
- Within stated statistical and systematic uncertainties, good agreement of data and JETPHOX, for all centrality bins over wide range in p_T

Data/JETPHOX

Conclusions

- Measurement of isolated prompt photons in 2.76 TeV lead-lead collisions by ATLAS over a broad kinematic range
 - $p_T = 45-200 \text{ GeV}, |\eta| < 1.3$
- Photons reconstructed in longitudinally-segmented ATLAS calorimeter
 - Tight shower shape cuts used to reject contributions from jets
- Jets subtracted using double sideband technique
 - Purity measured to be 70-80% at low p_T, increasing with increasing p_T
- Good agreement with JETPHOX pp cross sections
 - No significant dependence on transverse momentum or centrality
- Photons will be useful for studying recoil jet in more detail
 - Stay tuned for wider rapidity range and correlations with jets

Extra slides

Systematic uncertainties

Tight photon definition

The tight cuts were varied to account for varying levels of optimization and adjustment to MC.
 Variations of the result were within ±20%

Non tight cuts

• The definition of non-tight cuts was varied and results were consistent within 3%

• Isolation criteria

 The isolation criteria were varied both in cone size, energy, and possible misestimates of shower leakage. Variations were within ±20%

Energy scale

Very conservative estimate on energy scale uncertainty based on 3% seen in testbeam, 12% variations in yield

Event counting

 Proportionality between measured luminosity and number of events checked throughout 2011 run, and stable within <1%

Unfolding corrections

Not applied in this analysis, estimated to be 3% in lowest p_T bin, applied to all bins

Total uncertainty on photon yield estimated at 31%, independent of p_T and centrality

Material description in front of calorimeter

"Tight" photons

Using granular calorimeter cells, define 9 "shower shape" variables (all used in pp) with

- second layer gives rough measurement of shower width
- hadronic calorimeter used for tag obvious jets
- first layer used to reject π^0 and η

- R_{η} , the ratio of energies deposited in a 3×7 ($\eta \times \phi$) window to that deposited in a 7×7 window, in units of the second layer cell size.
- $w_{\eta,2}$, the root-mean-square width of the energy distribution of the cluster in the second layer in the η direction
- \bullet $R_{\rm had}$, the ratio of leakage into the hadronic calorimeter to the energy of the photon cluster.
- R_{ϕ} , the ratio of energies deposited in a 3 × 3 ($\eta \times \phi$) window in the second layer to that deposited in a 3 × 7 window, in units of the second layer cell size.
- $w_{s,tot}$, the total RMS of the energy distribution in the η direction in the first sampling "strip" layer
- \bullet $w_{s,3}$, the RMS width of the three "core" strips including and surrounding the cluster maximum in the strip layer
- F_{side} , the fraction of energy in seven first-layer strips surrounding the cluster maximum, not contained in the three core strips (i.e. $(E(\pm 3) E(\pm 1))/E(\pm 1)$)
- \bullet E_{ratio} , the asymmetry between the energies in the first and second maxima in the strip layer
- \bullet ΔE , the energy difference between the first maximum and first minimum between the first and second maxima

Satisfying all 9 cuts: "tight" Failing any of 4 first layer cuts (•): "non tight"

- Even without a reference distribution, can look at centrality dependence in bins of photon p_T
- Centrality represented here as mean number of participants in each bin
- No dependence on N_{part} within statistical (error bars) and systematic uncertainties (grey bands, will be yellow)

Trigger efficiency

Use ATLAS electromagnetic object trigger, based on combinations of 0.1x0.1 "towers" and threshold of 16 GeV: 0.2x0.2 sliding window but trigger is only on 0.2x0.1 regions