Measurements of the Z boson via the two-lepton channels in heavy ion collisions in ATLAS Zvi Citron

for the ATLAS Collaboration

Why Measure Z Bosons?

- Large mass ensures production is confined to initial hard scattering
- Color neutral final states do not interact with the QCD medium
- No energy loss expected, should scale with <N_{coll}>
- First step to Z correlations
- Clean signal in two channels, $Z \rightarrow ee$ and $Z \rightarrow \mu \mu$
- 0.15 nb⁻¹ of Pb+Pb @ √S_{NN}=2.76 TeV

The ATLAS Detector

 ATLAS has excellent electron and muon reconstruction using charged tracking + calorimetry/muon spectrometry

Tracking

- •Precise tracking and vertexing
- *coverage:* |η|<2.5
- •B (solenoid) =2T
- •*Pixels (Si): σ* = 10 μ*m* [*rφ*]
- •80M channels ; 3 layers and 3 disks ;
- •SCT (106 Si strips): σ = 17 μm [rφ]
- •Transition Radiation Tracker

The ATLAS Detector

 ATLAS has excellent electron and muon reconstruction using charged tracking + calorimetry/muon spectrometry

The ATLAS Detector

 ATLAS has excellent electron and muon reconstruction using charged tracking + calorimetry/muon spectrometry

•Muon spectrometer (MS)

- •Air-core toroid magnetic field
- •Covers up to $|\eta|=2.7$
- •Triggers
- •Filtering provided by the calorimeters
- •Tracking in B field for momentum
- •Measurement matching with Inner Detector (ID) to improve resolution and vertex capabilities

Z→ee Event Display

•FCal $\Sigma E_T = 1.58$ TeV (10-20% Centrality) •m_{ee} = 92.2 GeV •p_T^Z = 4.8 GeV •y^Z = -0.2

Inner Tracking + Calorimeter

Z→µµ Event Display

•FCal $\Sigma E_T = 2.16$ TeV (10-20% Centrality) •m_{µµ} = 102 GeV • $p_T^Z = 4.96$ GeV • $y^Z = -0.13$

Inner Tracking + Muon Spectrometer

Selecting the Leptons

- Electrons
 - $E_T > 20 \text{ GeV}$
 - |η|<2.5
 - Shower shape and energy cuts in calorimetry
 - Subtract underlying event energy from each electron
- Muons
 - $p_{T} > 10 \text{ GeV}$
 - |η|<2.7
 - Track quality cuts

Triggering on Electrons

Nominal Trigger Threshold

Triggering on Muons

Nominal Trigger Thresholds

Muon Trigger: •Muon spectrometer based trigger •Two trigger thresholds used •4 GeV (less efficient) •10 GeV (more efficient) •10 GeV (more efficient) •For p_T >10 GeV •(98.2 ± 0.5)% peripheral •(90.9 ± 0.5)% central

Triggering on Muons

Mass Distributions

Zvi Citron

12

Pair the selected leptons Select Z boson in mass window 66-102 GeV Signal Purity ~ 95% in Z→ee and ~99% in Z→μμ Simulation is PYTHIA in HIJING events, reconstructed

Corrections to Yield

- Use PYTHIA Z→ℓℓ embedded into HIJING to calculate corrections:
 - Look in centrality, momentum, and rapidity
 - Bin-by-bin unfolding
 - Reconstruction efficiency (including minimum p_T^{lepton}, and mass)
 - Lepton identification cuts efficiency
 - Correct up to mass window 66-116 GeV

Corrections to Yield

- Use PYTHIA Z→ℓℓ embedded into HIJING to calculate corrections:
 - Look in centrality, momentum, and rapidity
 - Bin-by-bin unfolding
 - Reconstruction efficiency (including minimum p_T^{lepton}, and mass)
 - Lepton identification cuts efficiency
 - Correct up to mass window 66-116 GeV

Corrections to Yield

- Use PYTHIA Z→ℓℓ embedded into HIJING to calculate corrections:
 - Look in centrality, momentum, and rapidity
 - Bin-by-bin unfolding
 - Reconstruction efficiency (including minimum p_T^{lepton}, and mass)
 - Lepton identification cuts efficiency
 - Correct up to mass window 66-116 GeV

Corrected Spectra

Each decay channel corrected and background subtracted Channels combined according to uncertainties (uncorrelated across channels) PYTHIA normalized by area for shape comparison – agrees well

16

Binary Collision Scaling

•Fully corrected Z boson Yield scaled by <N_{coll}>

•Statistical uncertainty bars, systematics in boxes, and brackets combined (including <N_{coll}>

•Dashed lines are flat line fits to combined channel yields

•Consistent with binary collision scaling appears to hold true!

Nuclear Modification Factor

Form nuclear modification factor by taking ratio of points on previous slide

R_{PC} = Yield in central collisions/ Yield in peripheral collisions

 $R_{PC} = \frac{\langle N_{coll} \rangle(C)}{\langle N_{coll} \rangle(P)} \frac{(1/N_{\rm evt,P}) d^2 N_{\rm P}/dy dp_{\rm T}}{(1/N_{\rm evt,C}) d^2 N_{\rm C}/dy dp_{\rm T}}$

Flow of Z bosons?

Measure the elliptic flow, v_2 , of the Z bosons

Z boson production in unmodified hard scattering should not flow $v_2 = -0.011 \pm 0.018$ (stat.) ± 0.014 (sys.) in 0-60% centrality

Summary

- Z>ee and Z> $\mu\mu$ measured in L = 0.15 nb⁻¹ of Pb+Pb @ $\sqrt{S_{NN}}$ =2.76 TeV
- 1995 Z candidates reconstructed, signal purity about 97%
- Spectral shape and rapidity distribution match well with PYTHIA prediction for p+p
- Comparing production in different centrality bins consistent with binary collision scaling

