Dijets at RHIC: What can we learn from A_i?

B. Mueller speaking for C.Coleman-Smith

HardProbes - 2012

See arXiv:1205.6781 (May 30, 2012)

Dijet Observables at RHIC

$$A_j = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

- LHC Dijet Asymmetry A_j shows strong modification of reconstructed jets.
- Identified jets measurements are possible at RHIC, which observables are the most informative? Is the dijet asymmetry the best? Are there other suitable intra-jet observables?
- Need to understand dependence of observables upon underlying processes to make useful deductions about the nature of the QGP.
- Carry out a systematic analysis of the sensitivity of dijet observables at RHIC scales. Use VNI/BMS Parton Cascade Model.

VNI/BMS, a simple-enough transport model

 VNI/BMS models partonic transport via the Boltzmann equation. Treats medium and jet on an equal footing.

$$p^{\mu} \frac{\partial}{\partial x^{\mu}} F_k(x, \mathbf{p}) = \sum_{\text{processes}} C_i F.$$

- Interactions are tree level 2->2 scatterings and final-state radiation. Radiation includes leading order (BDMPS-Z) LPM effect.
- Medium is a box of thermal partonic QGP at a fixed temperature. No expansion!
- A generated jet is injected, cascade of interacting partons are tracked. Evolution of entire jet is recorded.
- A Jet-finder is applied in post-processing stage, jet development can be extracted for varying jetdefinitions.

$$-\Delta E_{\text{BDMPS}} = \frac{\alpha_s C_R}{8} \frac{\mu^2}{\lambda_g} L^2 \log \frac{L}{\lambda_g}.$$

Dijet Asymmetry at RHIC

- Use VNI/BMS to understand dependence of A_j and other observables on:
 - qhat, determined by the medium temperature: T = 250, 350, 450 MeV
 - Cuts on leading jet energy and coneradius:
 Elead > 20, 35, 50 GeV, R = {0.2, 0.3, 0.4}
 - Interaction mechanism, elastic or elastic +radiative
- Generate pp events at 200 GeV using Pythia
 8, of acceptable dijet pairs using FastJet.
- Sample production vertices uniformly within a circular medium of some radius R.
- Insert partonic contents of each jet into parton cascade box and evolve for sampled path length.

Dijet Asymmetry - Varying Circular Medium Radius

Longer medium radius increases asymmetry

Medium does not expand, temperature is constant

Dijet Asymmetry - Varying Medium Temperature

medium radius fixed at 5fm

Nevents T<0.45 ~ 4000 Nevents T=0.45 ~ 2000 Increasing medium temperature increases asymmetry.

Dijet Asymmetry - Varying Jet Cone Radius

Increased Cone Radius reduces asymmetry, captures more of the modified jet

Dijet Asymmetry - Varying Strong Coupling

medium radius fixed at 5fm

medium temperature T = 250 MeV

Jet Shape

Jet Shape - 2, varying strong coupling

VNI/BMS Partonic Fragmentation - z

Single parton jet peak **enhanced** by evolution soft partons scattered out of the jet

Radiation fills in soft region, z=1 peak is still enhanced

VNI/BMS Partonic Fragmentation j_T

Evolution tends to soften the distribution transverse to the jet axis (fixed R)

Conclusions

- RHIC Dijet Asymmetry is sensitive to: strong coupling, medium radius, medium temperature and cone radius. Sometimes this is subtle.
- Many jets are not modified, leading jets are strongly surface biased (this is a consequence of pQCD value for qhat!)
- Those that are modified have a softened radial profile (jet shape), partons are scattered transverse to the jet axis, transverse fragmentation profile softened.
- Partonic fragmentation distributions are peaked at z = 1 for RHIC jets, fragmentation changes <N> and redistributes p_t.
- Interplay of vacuum and medium evolution is clearly important for these observables. Working to implement a simple-enough fragmentation scheme to complement this analysis.

Extra Results

LHC Results

Circle Mode + Glauber Vertices can reproduce LHC data reasonably well.

Central collisions (0-10%)

Both results include detector smearing effect

$$E_t^{\star} \sim N(E_t, \alpha \sqrt{E_t}), \quad \alpha \simeq 1.2$$

Presented at QM 2011

LHC/RHIC Comparison. - Medium Radius

Thursday, May 31, 12

LHC/RHIC - Varying Medium Temperature

RHIC

Modification is similar between scales

LHC/RHIC - Jet Shape

Thursday, May 31, 12

Backup Information

Coherence Effects in QCD Radiation

- Coherence scales with formation time 2ω
 - $au_f = rac{2\omega}{q_\perp^2}$
- Gluon scattering dominates
- Incoherent emission, Bethe-Heitler

$$\Delta E \propto L$$

- Individual scattering centers not resolved. Coherent radiation. LPM effect $\Delta E \propto L^2$
- Coherence length exceeds medium, Factorization limit.

$$\Delta E \propto \sqrt{E}L$$

⁹Landau.L.D, Pomeranchuk.I *Dokl.Akad.Nauk.Ser.Fiz 92 (1953)*, Migdal.A.B *Phys.Rev.103:1881 (1956)*

Zapp and Wiedemann, LPM Algorithm

- Probabilistic local implementation of coherence, gives rise to an L^2 energy loss.
- Post Inelastic scattering, compute formation time of emitted gluon
 - Emitting parton does not interact during this time
 - Radiated gluon rescatters elastically off the medium, recompute modified formation time
 - Repeat until formation time expires
 - Quark and gluon propagate freely
- Simulates coherent emission from multiple centers

$$\tau_f^{(n)} = \frac{2\omega}{\left(\mathbf{k}_{\perp} + \sum_{i=0}^{n} \mathbf{q}_{\perp}^{(i)}\right)^2}$$

Zapp K, Wiedemann U. *Phys Rev Lett*, 103 (2009) JEWEL CCS, S.A.Bass, D.K.Srivastava, *hep-ph/1101.4895*