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Dijet Observables at RHIC 77 By 4 Eogg

e | HC Dijet Asymmetry A; shows strong modification of reconstructed jets.

¢ |dentified jets measurements are possible at RHIC, which observables are the
most informative? Is the dijet asymmetry the best? Are there other suitable
intra-jet observables?

e Need to understand dependence of observables upon underlying processes
to make useful deductions about the nature of the QGP.

e Carry out a systematic analysis of the sensitivity of dijet observables
at RHIC scales. Use VNI/BMS Parton Cascade Model.
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VNI/BMS, a simple-enough transport model

e VNI/BMS models. partonic transport via the p’uai,qu(X, p) = Z C:F.
Boltzmann equation. Treats medium and jet on an X processes
equal footing.
S 24T T IR
8 nt o
e Interactions are tree level 2->2 scatterings and < 2f {+* E
final-state radiation. Radiation includes leading & g E
order (BDMPS-Z) LPM effect. na o =
121 ++ 0{}{}0{} E
10;— o ° 0O =
e Medium is a box of thermal partonic QGP at a 8- o* o0 <
i ion! 6E 3o” E
fixed temperature. No expansion! h o5 - <l—
2— O Elastic Only
0 - ., | .| O Radiation Only

e A generated jet is injected, cascade of interacting @ 2 ¢ & ® 0 iz 1 -
partons are tracked. Evolution of entire jet is T

2
recorded. —AEBDMPS = 3 L?log N
g g

e A Jet-finder is applied in post-processing stage,
jet development can be extracted for varying jet-
definitions.
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Dijet Asymmetry at RHIC

Leading Jet
e Use VNI/BMS to understand dependence of
Pythia pp & A;j and other observables on:
Fastlet m Insert all partons e ghat, determined by the medium
j\ temperature: T = 250, 350, 450 MeV
r N e Cuts on leading jet energy and cone-
Subleading Jet radius:
Generate pp PARTON Elead > 20, 35, 50 GeV, R = {0.2, 0.3, 0.4}
events CASCADE ¢ |nteraction mechanism, elastic or elastic
+radiative
~—
Jet Path
sSample | e Generate pp events at 200 GeV using Pythia
p:;ﬁﬁgggn Evolve for 8, of acceptable dijet pairs using FastJet.
sampled
(@ length. e Sample production vertices uniformly within
a circular medium of some radius R.
A
</
*' Jet Path . -
Fffective Medium 8 e Insert partonic contents of each jet into
Radius parton cascade box and evolve for sampled

path length.
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R cone: 0.3
Temp: 0.35
LeadCut: 35 elastic
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A R medium =1fm N
A R medium =3 fm
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Medium does not expand, temperature is constant

P(A)

Dijet Asymmetry - Varying Circular Medium

Radius

Longer medium radius increases asymmetry
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< 4 X T =0.35 GeV
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Dijet Asymmetry - Varying Medium Temperature

medium radius fixed at 5fm
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Increasing medium temperature increases
asymmetry.
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Dijet Asymmetry - Varying Jet Cone Radius
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Increased Cone Radius reduces asymmetry,
captures more of the modified jet

Thursday, May 31, 12




A alpha=0.2
+
< - alpha=0.3
\ < alpha=0.35
A\ ® alpha=0.4
L © alpha=0.6
™ A " + Vacuum
~ o Al
<< '§g\‘ﬁ T.med: 0.25 GeV
E_/ Al - \9 R.cone: 0.2
0—o \ elastic
AN _o—°~ o R.med: 5fm
e
— <
+ A 0\3\ \
+~ A
+
o - é\gk
| | | | |
0.0 0.2 0.4 0.6 0.8
A,

Dijet Asymmetry - Varying Strong Coupling

medium radius fixed at 5fm
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—nergy Loss Distributions

Surface Bias
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Reconstruct jets with Anti-Kt at successively larger

Jet Shape cone radii

o | — u o _ u
o)) . o -”
S - S -
Temp: 0.25 L Temp: 0.35
= OC‘;- N LeadCut:20- = OC? . ,," LeadCut: 20 -
o R.med: 5fm| & R.med: 5fm
= I~ = N~
L o T L o] -
LT LT ,
Q] —— Vacuum Lead |- = I —— Vacuum Lead |-
- -- Vacuum Sub ; - -- Vacuum Sub
o —— Elastic Lead o ; —— Elastic Lead
o | Elastic Sub [ o |l | --- ElasticSub [
Rad Lead .' Rad Lead
< Rad Sub B < Rad Sub N
© © T | | | | |
0. 0.2 0.4 0.6 0.8 1.0
R
Clear separation between elastic (red) and Difference between medium temperatures
radiative (orange) modes and leading and s very strong, note values as R->0

subleading jets
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Jet Shape - 2, varying strong coupling

o |
o0
Q-
N g— IR —<— Vacuum Lead
w AP /- -- Vacuum Sub
3 e _-© —— Lead alpha=0.3
T --- Subalpha=0.3
. o7 —— Lead alpha=0.35
PN --- Sub alpha=0.35
NPT —— Lead alpha=0.4
o + Temp: 0.35 L ~
" LeadCut: 20 Sub alpha = 0.4
o _ elastic --- Sub alpha=0.6
o
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

R

elastic interactions only

E(R)/E«(1)

0.4

1.0

0.8

0.6

0.2

0.0

ls
]
e
n
/]

4
f
d

v Vi /7

' 7/

4

n_-

Vacuum Lead
Vacuum Sub
Lead alpha=0.3
Sub alpha = 0.3
Lead alpha=0.35
Sub alpha=0.35
Lead alpha=0.4

", Temp: 0.35
"' | eadCut: 20 --- Subalpha=0.4
elastic+rad --- Sub alpha=0.6
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

R

elastic+radiative

Thursday, May 31, 12



VNI/BMS Partonic Fragmentation - z
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VNI/BMS Partonic Fragmentation |t
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Evolution tends to soften the distribution
transverse to the jet axis (fixed R)
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Conclusions

e RHIC Dijet Asymmetry is sensitive to: strong coupling, medium radius, medium
temperature and cone radius. Sometimes this is subtle.

e Many jets are not modified, leading jets are strongly surface biased (this is a
consequence of pQCD value for ghat!)

¢ Those that are modified have a softened radial profile (jet shape), partons are
scattered transverse to the jet axis, transverse fragmentation profile softened.

e Partonic fragmentation distributions are peaked at z = 1 for RHIC jets,
fragmentation changes <N> and redistributes p:.

e |[nterplay of vacuum and medium evolution is clearly important for these
observables. Working to implement a simple-enough fragmentation scheme to
complement this analysis.
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—xtra Results
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LHC/RHIC - Varying Medium Temperature
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RHIC - Jet Shape
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LHC fragmentation - Z
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LHC Fragmentation - J
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Backup Information
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Coherence Effects in QCD Radiation

e Coherence scales with formation
time B 2w
Tf = "3 NN

91
e Gluon scattering dominates

. gluon
Bethe-Heitler

» quark

¢ |ncoherent emission, Bethe-Heitler

AF x L
¢ Individual scattering centers not

resolved. Coherent radiation. LPM - » gluon LPM
effect , oherent Process quark
AE XX L >
e Coherence length exceeds
medium, Factorization limit.
\/ gluon Factorization

?Landau.L.D, Pomeranchuk.l Dokl.Akad.Nauk.Ser.Fiz 92 (1953), Migdal.A.B
Phys.Rev.103:1881 (1956)
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Zapp and Wiedemann, LPM Algorithm

Final formation time

e Probabilistic local implementation of coherence, (n)
gives rise to an L2 energy loss. Tf -

: . , , n elastic scatterings
e Post Inelastic scattering, compute formation time of

emitted gluon

(0) R aiuiabiebiaieiiaii b > gluon
e Emitting parton does not interact during this time 7 ¢ - Initial formation time S
. >
quark

e Radiated gluon rescatters elastically off the

medium, recompute modified formation time inelastic scattering

2W
(ke + 37 gL )2

e Repeat until formation time expires ;n) _

e Quark and gluon propagate freely

e Simulates coherent emission from multiple centers Zapp K, Wiedemann U. Phys Rev Lett, 103 (2009) %WE

CCS, S.A.Bass, D.K.Srivastava, hep-ph/1101.4
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