

Nuclear modification of J/ ψ production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Jens Wiechula for the ALICE Collaboration

Outline

- Motivation
- J/ψ measurement in ALICE
- J/ψ analysis in Pb-Pb collisions
- R_{AA} preliminary results
- Comparison with other experiments
- Comparison with models
- Conclusions

Motivation

Interesting interplay between expected sequential suppression
 (T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986)) and statistical (re)generation
 (e.g. Andronic et al. Phys. Lett. B652 (2007) 659)

of J/ψ production at LHC energies

 Rapidity dependence important to determine the total cross section (down to p,=0) at LHC energy

The ALICE detector

J/ψ measurement in ALICE

J/ψ measurement in ALICE

Event statistics and centrality

Di-electron channel

- Minimum bias trigger (12.8M events)
- 2010 data set (L_{int}=1.7μb⁻¹)

- di-muon trigger (17.7M events)
- 2011 data set (L_{int}=70µb⁻¹)

Centrality selection

- Based on VZERO amplitude
- Fitted with distribution obtained by a geometrical Glauber MC

Track and Pair selection

Di-electron channel

- Particle Identification via dE/dx using TPC only (|nσ_e|<3, |nσ_{p,π}|>3.5)
- $|y^{J/\psi}| < 0.9$

Di-muon channel

- Hadrons stopped by front absorber and iron wall of the trigger
- Muon candidates are required to have hits in the muon trigger chambers
- $2.5 < y^{J/\psi} < 4$

Signal extraction in the di-electron channel

Background

- Described using event mixing (ME)
- Scaled to same-event spectrum in 3.2 < M < 4.0 GeV/c²
- Signal extraction
 - Subtract ME background
 - Signal integration within
 2.92 < M < 3.16 GeV/c²
 - About 2000 J/ψ in analysed data sample

Signal extraction in the di-muon channel

Background

- Several methods used (variable width gaussian, sum of two exponentials, event mixing)
- Signal extraction
 - Shape described by an extended Crystal Ball function (allows for non-gaussian tail on the r.h.s. of the peak)
 - Combined fit with background shape
 - About 40k J/ψ in analysed data sample

Efficiencies

- For di-electron eff. Hijing enriched with J/ψ
- For di-muon channel real Pb-Pb events enriched with MC J/ψ (embedding)
- Only weak dependence on centrality
- Realistic J/ψ parametrizations
 - for p_t and y based on interpolated data from RHIC to LHC energies (F.Bossu et al., arXiv:1103.2394 [nucl-ex])
 - Shadowing from EKS98 calculations (K.J.Eskola et al., Eur. Phys. J. C9, 61 (1999))
 - Polarisation assumed to be 0 (measured in pp: PRL 108, 082001 (2012))

Normalisation

Corrected yield in each centrality bin i

$$Y_{J/\psi}^{PbPb,i} = \frac{N_{J/\psi}^{PbPb,i}}{BR \times A \epsilon^{i} \times N_{MB}^{events,i}}$$

 Normalised to measured pp crosssection at same √s_{NN}, scaled by T_{AA} (Glauber MC)

$$R_{AA}^{i} = \frac{Y_{J/\psi}^{PbPb,i}}{T_{AA}^{i} \times \sigma_{J/\psi}^{pp}}$$

pp measurement from ALICE data

arXiv:1203.3641v1 [hep-ex]

C. Geuna (IIIa - Tue 14:35 - T3)

Systematic uncertainties in the di-electron channel

Source	Centrality						
	0-10%	10-40%	40-80%				
Signal extraction	29%	18%	18%				
T _{AA}	4.3%	4.2%	6%				
Matching data - MC		< 10%					
J/ψ p _t distribution in MC		~2%					
Total	30%	20%	20%				

- Dominated by signal extraction
 - Description of background shape (ME)
 - Small signal / background ratio
- Correlated contribution:
 - pp reference: 26%

Systematic uncertainties in the di-muon channel

Source (uncorrelated)	Centrality (% most central)								
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Signal extraction	2.3%	1.2%	1.2%	1.1%	0.9%	0.9%	1.5%	1.9%	2.4%
T _{AA}	4.3%	4.2%	4.2%	4.4%	5.2%	6.8%	7.6%	10.8%	10.1%
Trigger (uncorr.)	2.0%	1.5%	1.0%	0.5%			-		
Tracking (uncorr.)	1.0%	0.5%				-			
Total	5.3	4.4	4.5	4.5	5.1	7.0	7.7	11.0	10.4

- Uncorrelated systematic uncertainty dominated by T_{AA}
- Correlated contributions:
 - PbPb: 6.4% trigger eff., 6% tracking eff., 5% MC J/ψ distr., 2% matching eff., 2% trigger normalisation
 - pp reference: 8.2%
 - Total: 14%

Preliminary R_{AA} vs. Npart

- Large global uncertainty at mid rapidity due to pp reference
- Factor 20 in L_{int} for results at forward rapidity compared to previously published results (arXiv:1202.1383v1 [hep-ex])

- Error bars: statistical uncertainty in Pb-Pb
- Boxes: uncorrelated systematic uncertainty in Pb-Pb
- Global systematic: correlated uncertainty in Pb-Pb and uncertainties in pp added in quadrature
- ALICE common global syst.: luminosity uncertainty in pp @ 2.76 TeV

Preliminary R_{AA} vs. rapidity and p_t

- R_{AA} decreases with y
- R_{AA} increases for low p_t (forward rapidity)

Comparison to PHENIX

- Larger R_{AA} at LHC energies than at RHIC
- Seen both at mid and forward rapidity

Comparison to CMS

C. Suire (Plenary 3B - Wed 11:00)

- ALICE results for low p_t J/ψ (0 < p_t < 8 GeV/c)
- CMS results for high p_t J/ψ (6.5 < p_t < 30 GeV/c)
- Comparison shows smaller R_{AA} for high pt J/ψ at more central collisions

Comparison to different models

- Comparison with models that take into account statistical (re)generation
- Statistical Hadronisation and Transport models agree with measurements within uncertainties for N_{part}>50

Summary

- Inclusive J/ψ R_{AA} in Pb-Pb collisions at √s_{NN}=2.76 TeV
- Measurements at central (|y|<0.9) and forward rapidity (2.5<y<4), both down to p_t=0
- R_{AA} decreases with y
- Higher R_{AA} at small p_t
- Less suppression at LHC than RHIC
- Statistical Hadronisation and Transport models agree with measurements for N_{part}>50
- Shadowing at LHC: will be addressed by results from p-Pb run end 2012

Backup

Comparison to PHENIX

- Less suppression at LHC energies than at RHIC
- Seen both at mid and forward rapidity

Comparison to PHENIX and CMS (p, dependence)

