Charmonium production @ ALICE

for

Hard Probes 2012

27 May – 1 June 2012, Cagliari (Sardinia, Italy)

High-Energy Nuclear Collisions

Christophe.Suire@ipno.in2p3.fr

5th international Conference on Hard and Electromagnetic Probes of

Outline

Physics motivations

ALICE detector

Charmonia in pp collisions

- \rightarrow "Highlights"
- \rightarrow Reference for R_{AA}

Charmonia in Pb-Pb collisions $\rightarrow J/\Psi R_{AA}$ $\rightarrow J/\Psi V_2$

Conclusions

Quarkonia suppression

 J/ψ suppression in heavy-ion collisions is a signature of deconfinement.

T. Matsui and H. Satz, J/ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B178, 416(1986)

SPS and RHIC measurements of J/ Ψ suppression - Suppression above cold nuclear matter effects is not so large neither at SPS nor at RHIC. + RHIC measure higher suppression at forward rapidity than at mid rapidity. - suppression of ψ ', χ_c (~ 40% of the observed J/ Ψ) only

- $\rightarrow R_{AA}/R_{AA}(CNM) \sim 0.6$
- Cold nuclear matter effects are important
 - \rightarrow nuclear absorption
 - \rightarrow gluon PDF modification (anti-) shadowing

Quarkonia suppression or...

$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{Pb-Pb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15}(\text{stat}) \pm 0.03(\text{syst}),$$

CMS collaboration Phys. Rev. Lett. 107 (2011) 052302

CMS results are pointing to "Indications of Suppression of Excited Y States in Pb-Pb Collisions" \rightarrow J/ Ψ dissociation temperature reached ?

In most central A-A collisions	SPS 20 GeV	RHIC 200 Gev	LHC 2.76 TeV	Large number of charm quarks created in central Pb-Pb collisions at LHC: \rightarrow re-generation at work ? \rightarrow can we see a clear signature ?	oduction Probabili	statistical regenerat
N _{ccbar} /event	~0.2	~10	~60		J/ ψPr	

Energy Density

Quarkonium production in ALICE

Hard Probes, 27 May - 1 June 2012

The ALICE detector

The ALICE detector

The ALICE detector

Christophe.suire@ipno.inzps.ir

Quarkonium production in ALICE

marg Propes, 27 may - 1 June 2012

Quarkonia in ALICE

J/ Ψ in ALICE/LHC: pp collisions at $\sqrt{s} = 7$ TeV

Rapidity and transverse momentum dependence of inclusive J/ Ψ production in pp collisions at \sqrt{s} = 7 TeV Physics Letters B 704 (2011), pp. 442-455.

- Box = systematic uncertainties on luminosity
- \rightarrow Good agreement between ALICE and LHCb for 2.5 < y < 4
- \rightarrow extension of p_t range measured by ATLAS and CMS down to 0 GeV/c

Christophe.Suire@ipno.in2p3.fr

J/ Ψ production vs multiplicity in pp collisions at $\sqrt{s} = 7$ TeV

 $< dN_{ch}/d\eta > = 6.0$

Relative J/ψ yield increases linearly with the relative multiplicity.

→ model predictions do not reproduce the data → should help understand the interplay between hard and soft interactions in the context of multipartonic interactions (MPI), and/or underlying event → study ongoing with other observables, e.g. Dmesons

Christophe.Suire@ipno.in2p3.fr

J/ Ψ production vs multiplicity in pp collisions at $\sqrt{s} = 7$ TeV

Highest charged particle multiplicity $(dN_{ch}/d\eta \sim 30)$ in this analysis is comparable with Cu-Cu collisions (50-55%) @ 200 GeV.

 $< dN_{ch}/d\eta > = 6.0$

Relative J/ψ yield increases linearly with the relative multiplicity.

→ model predictions do not reproduce the data → should help understand the interplay between hard and soft interactions in the context of multipartonic interactions (MPI), and/or underlying event → study ongoing with other observables, e.g. Dmesons

〈dN

arXiv:0402078

Quarkonium production in A

0000

J/ Ψ polarization in pp collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

Polarization measurements provide a crucial test for theoretical calculations of quarkonia production.

First measurement of J/Ψ polarization at LHC:

 \rightarrow polarization parameters $\lambda_{_{\theta}}$ and $\lambda_{_{\phi}}$ are consistent with zero

```
(Inclusive J/\Psi (\psi',\chi_c and J/\Psi \leftarrow B) with 2.5 < y<sub>...</sub> < 4.)
```

C.Geuna, Parallel 3A, may 29th

Next: \rightarrow increase p_t range for a more stringent test of theoretical models (e.g arxiv:1201.3862) and compare to upcoming measurements at LHC \rightarrow ongoing analysis of J/ ψ polarization in Pb-Pb collisions

Christophe.Suire@ipno.in2p3.fr

Quarkonium production in ALICE

J/Ψ from B-hadrons decay

J/Ψ from B-hadrons decay

J/ ψ from B decays at mid rapidity and low p_t $\sigma_{J/\psi}$ (prompt, |y|<0.9, p_t>1.3 GeV/c) = 7.2 ± 0.7 (stat) ± 1.0 (syst) ^{+1.3 (λ HE=1)} _{-1.2 (λ HE=-1)} µb \rightarrow improvements to come: higher stat. and dedicated trigger.

J/Ψ in ALICE: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$

NRQCD calculation describes the measured p_t dependence at both 7 and 2.76 TeV pp @ 2.76 TeV reference for the nuclear modification factor R_{AA} in Pb-Pb collisions the pp reference is the main source of $R_{\rm AA}^{i} = \frac{Y_{\rm J/\psi}^{i}(\Delta p_{\rm t}, \Delta y)}{\langle T_{\rm AA}^{i} \rangle \times \sigma_{\rm J/\psi}^{\rm pp}(\Delta p_{\rm t}, \Delta y)}$ systematic uncertainty in the R_{AA} computation:

 \rightarrow J/ Ψ (2.5<y<4), total uncertainty of 9%

 \rightarrow J/ Ψ (|y|<0.9), total uncertainty of 26%

Pb-Pb collisions

At LHC, unique capability of ALICE to measure J/ ψ production in heavyion collisions down to $p_{t} = 0$. 2.5<y<4 $J/\psi \rightarrow \mu^+\mu^ |y| < 0.9 \quad J/\psi \rightarrow e^+e^-$

For $J/\psi \rightarrow \mu^+\mu^-$ (2.5<y<4), we present results from 2011 data set, L~70 µb⁻¹ based on di-muon triggered events (2010 data set L~ 2.9 µb⁻¹). For $J/\psi \rightarrow e^+e^-$ (|y|<0.9), we present results from 2010 data set, L~1.7 µb⁻¹ based on minimum bias events.

Christophe.Suire@ipno.in2p3.fr

Quarkonium production in ALICE

Hard Probes, 27 May – 1 June 2012

Pb-Pb collisions: J/Ψ signals

17

Pb-Pb collisions: J/Ψ signals

Christophe.Suire@ipno.in2p3.fr

Quarkonium production in ALICE

Hard Probes, 27 May - 1 June 2012

18

ALICE

Pb-Pb collisions: J/Ψ signals

⊎ 0.16 ¥ 1/0.15 J/ψ A ϵ computed with MC 0.14 simulations: 0.13 Pb-Pb real event enriched with MC 0.12 F $J/\psi \rightarrow \mu^+\mu^-$ (embedding) Embedding MC J/ $\psi \rightarrow \mu\mu$ 0.11F in min. bias Pb-Pb Vs_{NN}=2.76 TeV ▼ HIJING enriched with $J/\psi \rightarrow e^+e^-$ 2.5<y<4.0, 0<p.<8 GeV/c 0.1 20/05/2012 0 10 20 30 40 50 60 70 80 90 Centrality (%) efficiency kinematical acceptance -tracking - particle identification (TPC) -sianal fraction J/ψ A ϵ is weakly centrality dependent. —total 0.8 $J/\psi \rightarrow e^+e^-$, At 7.8% to 8.9% $J/\psi \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -},$ At 13.3% to 14.5% 0.6 0.4 In most central Pb-Pb collisions, ALICE detector can handle the large 0.2 particle multiplicity with small (<10%) 40 loss of efficiency.

Pb-Pb collisions: J/Ψ Aε corrections

Christophe.Suire@ipno.in2p3.fr

Centrality (%)

20

ALICE

$J/\psi R_{AA} vs$ centrality

Clear J/Ψ suppression at forward rapidity. → almost no centrality dependence above $N_{part} \sim 100$. At mid rapidity, similar pattern but but large uncertainties prevent a firm conclusion. ALICE inclusive J/Ψ → $\mu^{+}\mu^{-}$ $R_{AA}^{0.90\%} = 0.497 \pm 0.006$ (stat.) ± 0.078 (sys.) ALICE inclusive J/Ψ → $e^{+}e^{-}$ $R_{AA}^{0.80\%} = 0.66 \pm 0.10$ (stat.) ± 0.24 (sys.)

Christophe.Suire@ipno.in2p3.fr

Quarkonium production in ALICE

J.Wiechula, Parallel 1A, may 28th

21

 $J/\psi R_{AA}$ vs centrality

 Clear J/Ψ suppression at forward rapidity. → almost no centrality dependence above N_{part} ~ 100.
 At mid rapidity, similar pattern but but large uncertainties prevent a firm conclusion.
 ALICE inclusive J/Ψ → μ⁺μ⁻ R_{AA}^{0-90%} = 0.497 ± 0.006 (stat.) ± 0.078 (sys.)

 \rightarrow good agreement with 2010 results: $R_{AA}^{0-80\%} = 0.545 \pm 0.032$ (stat.) ± 0.084 (sys.)

ALICE inclusive $J/\psi \rightarrow e^+e^- R_{AA}^{0-80\%} = 0.66 \pm 0.10 \text{ (stat.)} \pm 0.24 \text{ (sys.)}$

Christophe.Suire@ipno.in2p3.fr

22

$J/\psi R_{AA} vs$ centrality

At low-pt, ALICE $R_{AA} \ge 0.5$, no centrality dependence

 \rightarrow behavior clearly different to the one observed in PHENIX where a larger suppression and a strong centrality dependence is seen At high-p, larger suppression seen both by ALICE and CMS

 \rightarrow behavior is similar to the one observed at low energy

Indication that the suppression is p, dependent

R_{AA} vs p_t

▲ ALICE inclusive J/ψ → μ+μ- at forward rapidity.
R_{AA} ~ 0.6 at low-p_t down to R_{AA} ~ 0.35 at high-p_t. Suppression increases with increasing p_t.

 R_{AA} vs p_t

▲ ALICE inclusive J/ψ → μ+μ- at forward rapidity.
R_{AA} ~ 0.6 at low-pt down to R_{AA} ~ 0.35 at high-p_t. Suppression increases with increasing p_t.

Agreement with CMS data at high- p_t (1.6<|y|<2.4).

◄ PHENIX measured larger suppression at low-p_t (0-20% central, 1.2<|y|<2.2)</p>

R_{AA} vs y

 ✓ Inclusive J/ψ measured in ALICE at both mid and forward rapidity.
 R_{AA} decrease by 40% from y=2.5 to y=4.

Possible flat dependence toward mid rapidity.

 $J/\psi R_{AA} vs y$

Inclusive J/ψ measured in ALICE at both mid and forward rapidity.

 R_{AA} decrease of 40% from y=2.5 to y=4.

Possible flat dependence toward mid rapidity.

◄ Suppression beyond the current estimate of shadowing at forward rapidity.

 \rightarrow importance to measure cold nuclear matter effects.

C.Hadjidakis, Poster Session , may 29th

J/ ψ R_{AA} vs y,p_t: beauty-full results ?

Inclusive J/ψ measured in ALICE

Estimate of the prompt J/ ψ R_{AA} using: - b-fraction measured by CDF, CMS and LHCb - interpolation at \sqrt{s} = 2.76 TeV

- different b-quenching hypothesis from

$$R_{AA}(B) = 0.2 \text{ to } R_{AA}(B) = 1$$

 \rightarrow J/ ψ from b-hadrons decays have a negligible influence on our measurement.

J/ ψ R_{AA} vs N_{part}: model comparison

Main ingredients of the models.

1_ Stat. hadronization (Andronic & al.). Thermal model T =164 MeV, $\mu_B \sim 1$ MeV from particle ratio fits. All charm produced in initial hard scatterings. Charmonium production fully occurs at phase boundary. 2_ Transport (Rapp, Zhao). Boltzman transport eq. for J/ ψ . dNch/dy from measurement. $\sigma_{cc}|_{y=3.25} \sim 0.5$ mb. Shadowing ad hoc. $\sigma_{Abs} = 0.10\%$ of J/ $\psi \leftarrow B$, no quenching. . 3_ Transport (Liu,Qu,Xu & Zhuang). Boltzman transport eq. for J/ ψ . $\sigma_{cc}|_{y=3.25} \sim 0.38$ mb. EKS98 shadowing. $\sigma_{Abs} = 0. J/\psi \leftarrow B$, w/ and w/o quenching. Recent increase of σ_{cc} .

J/ ψ R_{AA} vs N_{part}: model comparison

Main ingredients of the models.

1_ Stat. hadronization (Andronic & al.). Thermal model T =164 MeV, $\mu_B \sim 1$ MeV from particle ratio fits. All charm produced in initial hard scatterings. Charmonium production fully occurs at phase boundary. 2_ Transport (Rapp, Zhao). Boltzman transport eq. for J/ ψ . dNch/dy from measurement. $\sigma_{cc}|_{y=0} \sim 0.75$ mb. Shadowing ad hoc. $\sigma_{Abs} = 0.10\%$ of J/ $\psi \leftarrow B$, no quenching. . 3_ Transport (Liu,Qu,Xu & Zhuang). Boltzman transport eq. for J/ ψ . $\sigma_{cc}|_{y=3.25} \sim 0.38$ mb. EKS98 shadowing. $\sigma_{Abs} = 0. J/\psi \leftarrow B$, w/ and w/o quenching. Recent increase of σ_{cc} .

J/ ψ R_{AA} vs p_t: model comparison

Both models correctly reproduce our measurement In both models, a large fraction of regenerated J/ Ψ have p_t < 3-4 GeV/c 31

J/ψ elliptic flow

pressure gradients in a thermalized medium convert spatial anisotropy into momentum space

 $\frac{dN}{d\Phi} = N \left(1 + 2v_2 \cos 2\left(\Phi - \psi \right) \right)$

Regeneration or recombination of charm quarks for J/ Ψ production will dominate the J/ Ψ flow at LHC comparing to that at lower energies. \rightarrow low and mid p, ranges are crucial

317c

P. Zhuang, Nucl. Phys. A834 (2010)

Xu,

Liu, N.

ч.

Charm and J/ψ elliptic flow

J/ψ elliptic flow Counts per 50 MeV/c² 000 000 000 000

13/03/2012

200

100

 $\chi^{2}/nDoF = 0.99$

Δφ bin: 0 - 1/6π

L.Massacrier, Parallel 1A, may 28th

J/ψ elliptic flow

J/ Ψ v₂ as a function pt for 20%-60% most central Pb-Pb collisions

Hint of non-zero J/ Ψ v₂ at intermediate p_t (2-4 GeV/c): significance = 2.2 σ

J/ψ elliptic flow

J/ Ψ v₂ as a function pt for 20%-60% most central Pb-Pb collisions

Hint of non-zero J/ Ψ v₂ at intermediate p_t (2-4 GeV/c): significance = 2.2 σ

J/ ψ elliptic flow

J/ Ψ v₂ as a function pt for 20%-60% most central Pb-Pb collisions

Clear hint of non-zero J/ Ψ v₂ at intermediate p_t (2-4 GeV/c): significance = 2.2 σ

Model prediction for v_2 shown here succeeds well at reproducing J/ ψ R_{AA}.

Conclusions

- ALICE has measured important features of J/ψ production in pp collisions
 - weak/null polarization, scaling with event multiplicity, feed down from b-hadrons.
 - cross-section at mid and forward rapidity [\rightarrow reference for Pb-Pb collisions]
- J/ ψ nuclear modification factor, R_{AA} and elliptic flow ,v₂ have been measured in Pb-Pb collisions at 2.76TeV.
 - J/ψ R_{AA} in Pb-Pb collisions exhibits a novel behavior with respect to PHENIX (lower energy) and CMS (high-p, J/ψ)

 \rightarrow flat centrality dependence at forward rapidity, with possible increase at mid rapidity for most central collisions

 \rightarrow $R_{_{AA}}$ is larger at low-p_t; low-p_t J/\psi are crucial at LHC to understand possible re-generation mechanisms

 \rightarrow R_{AA} decrease by 40% from y = 2.5 to y = 4.

- Models including J/ ψ production from deconfined charm quarks succeed well in reproducing the J/ ψ R_{AA} vs centrality and p_t.
- **_** First measurement of J/ψ elliptic flow: hint of non-zero v_2
- Prospects
 - measure cold nuclear matter effects in the p-Pb 2012 run
 - $_$ improve the R_{AA} and elliptic flow measurement