

Measurement of isolated photon-jet correlations in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ with CMS

Yue Shi Lai, for the CMS Collaboration MIT LNS

Hard Probes 2012, Parallel VB

Motivation

- Direct measurement of the parton energy loss in the QGP with photon-jet events.
- Isolated photons are unmodified
- Remove the "surface bias" which dijet events suffer
- Access to the initial parton energy via isolated photon
- Access to the final parton energy via jet reconstruction

See also Y.-J. Lee, Session IIIC (Tuesday)

P. Stankus, Ann. Rev. Nucl. Part. Sci. 55, 517 (2005)

Observables

• Azimuthal decorrelation: $|\Delta \varphi_{J\gamma}|$, and its parametrized width $\sigma(|\Delta \varphi_{J\gamma}|)$

• Transverse momentum ratio: $x_{Jy} = p_T^{Jet}/p_T^y$, and its mean $\langle x_{Jy} \rangle$

- Fraction of photons with associated jets: R_{Jy}
- $p_T^{\gamma} > 60 \,\text{GeV/c}$ (to have sufficient $x_{J_{\gamma}}$ phase space)
- $p_T^{\text{Jet}} > 30 \text{ GeV/c}$ (constrained by efficiency)

Signal Definition

- SumIso = uncorrected Track + ECAL + HCAL E_T in R < 0.4
- GenIso = generator level particle energy in R < 0.4
- Isolated prompt (non-decay) photons with SumIso < 1 GeV
- Comparison to MC definition GenIso < 5 GeV
- SumIso ≠ GenIso due to PbPb underlying event fluctuation

Isolation in Data

Y. Kim, QM 2011

Signal Selection: Stat. Subtr. of Decay Photons

- Shower shape $\sigma_{\eta\eta} = \sum_{i}^{5 \times 5} w_i (\eta_i - \eta_{5 \times 5})^2 / \sum_{i}^{5 \times 5} w_i$ $w_i = \max(0, c + \ln E_i / E_{5 \times 5})$
- Decay photons largely removed by cutting on σ_{nn} < 0.01
- Remaining contribution of decay photons removed using predicted σ_{nn} distribution
- Shape of background $\sigma_{\eta\eta}$ found data driven using photons failing the SumIso cuts

Signal Selection: Jet

- Anti- k_T particle flow jets, R = 0.3
- UE estimation/subtraction using φ -rings in η , excluding jet candidates (two iterations)
- Reconstruction > 90% efficient for p_T^{Jet} > 30 GeV/c in PbPb
- Jet energy resolution parametrized in arXiv:1205.0206

Analysis Flow Chart

Background processes

Signal photon-jet

Background from dijet

Background photon from jet

Remove data-driven by shower shape

Contribution from uncorrelated multiple interaction/fake

Photon

Remove by data-driven template from event mixing

Statistical Subtraction

Statistical Subtraction

Angular Correlation: $dN/d|\Delta\varphi_{J\nu}|$

- Distribution is consistent with pp & PYTHIA tune Z2 + Hydjet
- To quantify the centrality dependence, peak region is fit with an empirical formula

$$\frac{1}{N^{\gamma-\mathrm{jet}}}\frac{dN^{\gamma-\mathrm{jet}}}{d\Delta\phi_{J\gamma}} = \frac{e^{(\Delta\phi-\pi)/\sigma}}{(1-e^{-\pi/\sigma})\,\sigma}$$

Transverse momentum Ratio: dN/dx_{Jv}

- Momentum ratio shifts/decreases with centrality
- Unitary normalized distribution, points anticorrelated
- Open/shaded boxes try to indicate possible, anticorrelated systematic variation

arXiv:1205.0206, submitted to PLB

Angular Correlation Width: $\sigma(|\Delta \varphi_{J_V}|)$

Angular width $\sigma(|\Delta \varphi_{J\gamma}|)$ is consistent, both PbPb to pp and PbPb to PYTHIA tune Z2 + HYDJET

arXiv:1205.0206, submitted to PLB

Mean Momentum Ratio: $\langle x_{Jv} \rangle$

Significant deviation of $\langle x_{J\gamma} \rangle$ PbPb compared to PYTHIA tune Z2 + HYDJET, significance of PbPb vs. pp is weaker

arXiv:1205.0206, submitted to PLB

Fraction of Observing the Correlated Jet: R_{Jv}

The centrality dependence is mostly visible in $R_{J\gamma}$ (jet p_T shifting below the 30 GeV threshold)

arXiv:1205.0206, submitted to PLB

Summary

- Measurement of isolated prompt photon+jet correlation
- Direct observation of jet energy loss vs. initial parton energy
- No measurable change in $\Delta \varphi_{Jy}$, extends to $p_T^{-Jet} = 30$ GeV/c
- Shift of associated jet towards lower p_T with centrality:
 - Observation of significant shift of jet–photon p_T ratio with respect to MC
 - Shift with respect to pp is less significant due to large pp statistical uncertainties
 - Significant fraction of associated jets are shifted to p_T < 30 GeV/c

Backup

15 Years of Photon–Jet Theory

X-n. Wang (LBNL), Z. Huang, Phys.Rev.C55:3047-3061,1997

H.-z. Zhang et al., Phys. Rev. Lett. 103, 032302 (2009)

MC Reference: EM + QCD Hard Scattering

- CMSSW_4_4_2_patch3 global tag STARTHI44_V7
- PYTHIA tune Z2, D6T as cross check
- Prompt photons (LO/direct + fragmentation)
- $\hat{p}_T \in \{15, 30, 50, 80\} \text{ GeV}/c$
- Underlying event (UE)
 using HYDJET 1.8 (DRUM)
 – fits CMS random cone UE
 data

Collisional Centrality

- CMS uses HF for experimental determination of centrality
- Number of participants N_{part} describes the nuclear overlap (experiment independent)
- Correlation of centrality and N_{part} determined using Glauber geometry calculation (HIJING/AMPT)

MC Reference: PbPb UE

- HYDJET 1.8 (DRUM)
- Fits CMS UE (random cone)
- Fits well ALICE dN/dη, p_T spectrum, somewhat the event anisotropy (v₂) (PRL 106 (2011) 032301, PLB 696 (2011)

CMS 30, PRL 105 (2010) 252302)

p_{_}, GeV/c

Photon–Jet in 2011 CMS PbPb

Isolated Prompt Photons in CMS

- Isolated prompt photons in 2010 PbPb Data
- Yield matches pp NLO $\times \langle T_{AA} \rangle$

Signal Selection: Photon Isolation

Photon Selection Cuts

- $|z_{\text{vertex}}| < 15 \text{ cm}$
- $(1 E_4/E_1) < 0.9$ (Index 1: highest crystal, 4: 4 adjacent crystals)
- Seed supercluster $|\Delta t| < 3 \text{ ns}$
- *H/E* < 0.1
- No electron candidate
- SumIso < 1 GeV
- Shower shape cut defined next slide)

- $Iso_4^{UE-sub,ECAL} = Iso_4^{ECAL} \langle p_T^{Background,ECAL} \rangle$
- Analogously for track, HCAL (without $-p_T^{cand}$)

Cross Check: PYQUEN Closure

- Insert a possible model of energy loss and follow through the analysis chain
- Analysis closes on PYQUEN energy loss

Summary of Systematic Uncertainties: $\sigma(|\Delta \varphi_{J_V}|)$

Source	рр	50-100%	30-50%	10-30%	0-10%
γ purity	6.8%	6.8%	2.7%	0.5%	0.9%
γp_T threshold	3.0%	3.0%	3.0%	2.0%	1.2%
Jet p_T threshold	1.3%	1.3%	0.2%	0.5%	2.4%
Isolated γ definition	0.7%	0.7%	1.6%	2.0%	0.5%
Fake jet contamination	0.3%	0.3%	0.1%	0.2%	1.2%
γ efficiency	0.8%	0.8%	0.3%	0.3%	0.3%
Jet efficiency	0.6%	0.6%	0.7%	0.4%	0.3%
e^{\pm} contamination	0.5%	0.5%	0.5%	0.5%	0.5%
Jet φ resolution	0.5%	0.5%	0.5%	0.5%	0.5%
σfitting	0.3%	0.3%	0.1%	0.1%	0.1%
Total	7.7%	7.7%	4.5%	3.0%	3.2%

γ purity dominates due to different mixture of direct vs.
fragmentation photon

 $p_{\rm T}$ threshold influences the selected kinematics

Summary of Systematic Uncertainties: $\langle x_{Jv} \rangle$

Source	рр	50-100%	30-50%	10-30%	0-10%
γ–jet rel. energy scale	2.8%	4.1%	5.4%	5.0%	4.9%
γ purity	2.2%	2.2%	1.9%	2.4%	2.7%
Jet p_T threshold	0.7%	0.7%	1.9%	1.9%	2.0%
Isolated γ definition	0.1%	0.1%	0.7%	0.4%	2.0%
γp_T threshold	0.6%	0.6%	0.6%	0.6%	1.3%
Jet efficiency	0.5%	0.5%	0.6%	0.6%	0.5%
e [±] contamination	0.5%	0.5%	0.5%	0.5%	0.5%
Fake jet contamination	0.1%	0.1%	0.1%	0.2%	0.1%
γ efficiency	< 0.1%	< 0.1%	< 0.1%	0.1%	0.2%
Total	3.7%	4.8%	6.2%	6.0%	6.4%
Correlated	3.6%	3.6%	3.6%	3.6%	3.6%
Point-to-point	0.9%	3.2%	5.1%	4.8%	5.3%

Correlated = min. uncertainty for γ -jet rel. energy scale $\oplus \gamma$ purity

Systematic Uncertainty: Decorr. for $\langle x_{Jv} \rangle$

Source	рр	50-100%	30-50%	10-30%	0-10%
Total	3.7%	4.8%	6.2%	6.0%	6.4%
Correlated	3.6%	3.6%	3.6%	3.6%	3.6%
Point-to-point	0.9%	3.2%	5.1%	4.8%	5.3%

- Total = correlated ⊕ point-to-point, or Point-to-point = Total ⊕ correlated
- Correlated describes the overall $\langle x_{J\gamma} \rangle$ sensitivity
 - shifts all $\langle x_{Jy} \rangle$ points simultaneously
 - normalization-like
- Point-to-point describes pp and PbPb centrality dependence

Summary of Systematic Uncertainties: R_{Jy}

Source	рр	50-100%	30-50%	10-30%	0-10%
Jet p_T threshold	1.4%	1.4%	2.3%	2.6%	2.7%
γ purity	2.3%	2.3%	1.9%	0.2%	0.9%
γp_T threshold	2.0%	2.0%	1.9%	1.3%	2.1%
Jet efficiency	1.5%	1.5%	1.7%	1.8%	2.1%
Fake jet contamination	0.4%	0.4%	0.8%	1.0%	1.4%
Isolated γ definition	0.2%	0.2%	0.6%	1.3%	0.8%
e [±] contamination	0.5%	0.5%	0.5%	0.5%	0.5%
γ efficiency	0.2%	0.2%	0.2%	0.5%	0.5%
Total	3.7%	3.7%	4.1%	3.9%	4.5%

- Fully data driven, vary analysis by expected uncertainties
- Nonmonotonic centrality dependence due to statistical limitation
 - $R_{J\gamma}$ is not unitary normalized, and therefore more sensitive to the jet/photon sample and jet efficiency

Jet/Photon Relative Energy Scale

Energy Scale Source	рр	30-100%	0-30%
pp jet- γ relative (missing E_T projection fraction)	2%	2%	2%
pp data/MC difference	2%	2%	2%
Heavy ion UE on jet (PYTHIA + HYDJET 1.8)		3%	4%
Heavy ion UE on γ (PbPb ECAL \ominus pp ECAL)	_	< 1%	< 1%
Total relative	2.8%	4.1%	4.9%
pp ECAL	_	1%	1%
Total absolute	3.0%	4.2%	5.0%

- Jet energy scale = jet- γ relative \bigoplus ECAL absolute (next slide)
- Sampled jet p_T range is well calibrated (no extrapolation)
 - Relative energy scale directly shifts $x_{J\gamma}$ Absolute energy propagates into p_T thresholds

Isolated Photon Definition (System. Uncert.)

- Comparison of SumIso < 1 GeV reconstructed photon to GenIso < 5 GeV generator photon
- GenIso/SumIso difference quoted as a systematic uncertainty

