#### Measurements of Jets and Jet Properties in $\sqrt{s_{NN}}$ = 2.76 TeV PbPb Collisions with the ATLAS Detector at the LHC





#### Martin Rybář, for the ATLAS collaboration



IPNP Charles University

Hard Probes 2012, May 31, 2012



## Jets in Heavy Ion Collisions

- How do partons lose energy in hot medium - Quark Gluon Plasma (QGP)?
- How does the medium modify the parton showers?
- RHIC's measurements of high  $p_{_{T}}$  particles
- the first evidence for jet quenching.

- Need to do the full jet reconstruction to understand the effect in more detail:
  - Does the energy remain inside the jet but redistributed among fragments?
- Or is it the energy redistributed to the medium out of the cone?





#### **Jets in Heavy Ion Collisions**





- Need to do the full jet reconstruction to understand the effect in more detail:
  - Does the energy remain inside the jet but redistributed among fragments?
- Or is it the energy redistributed to the medium out of the cone?





### **The ATLAS Detector**



- ATLAS is a general-purpose p-p experiment, but the detector can be very well used for heavy ion physics!
- Large pseudorapidity coverage and full azimuthal acceptance.
- Fine granularity and longitudinal segmentation.
- Precise inner detector in a 2T solenoid field.
- Extensive system of muon chambers placed inside a 1T toroid field.





#### Centrality



- Characterize centrality by percentile of total cross-section using total E<sub>1</sub>.
- Measured in Forward Calorimeter (FCal) covering 3.2<|η|<4.9.</li>







#### Jet Reconstruction at ATLAS



- Reconstruction algorithm anti- $k_{t}$  (0.2, 0.3, 0.4, 0.5).
- Input: calorimeter towers 0.1 x 0.1 ( $\Delta \eta \times \Delta \phi$ ).
- Event-by-event background subtraction:  $E_{Tsub}^{cell} = E_T^{cell} \rho^{layer}(\eta) \times A^{cell}$
- $\rightarrow$  Anti-k, reconstruction prior to a background subtraction.
- $\implies$  Underlying event estimated for each longitudinal layer and  $\eta$  slice separately.
- We exclude jets with  $D = E_{T tower}^{max} / \langle E_{T tower} \rangle > 4$  to avoid biasing subtraction from jets but no jet rejection based on *D*.
- Additional iteration step to avoid biasing subtraction from jets.
- Jets corrected for flow contribution.





#### The First ATLAS HI Jet measurement: Di-jet Analysis

- Dijet imbalance quantified by asymmetry variable A.
- Data compared with Pythia di-jet (parton p<sub>T</sub> 35-280 GeV) embedded to HIJING with no quenching.

$$A_J \equiv \frac{E_{T1} - E_T}{E_{T1} + E_T}$$

2

- Sub-leading jet: highest  $E_{T}$  jet in opposite hemisphere.
- Events selected with minimum bias trigger (MBTS and ZDC).
- Leading jet: E<sub>T,1</sub>>100 GeV
- Sub-leading jet: E<sub>T,2</sub>>25 GeV
- **□** |η|<2.8



Enhancement at high A<sub>j</sub> is caused by events where the sub-leading jet is coming from background fluctuation.



#### Di-jet Analysis: do Distribution





Jets remain still back-to-back even in central collisions!



#### Di-jet Analysis: R=0.2 jet and E<sub>T</sub> Dependence



Increasing leading jet  $E_{\tau}$  smearing the peak at high  $A_{\mu}$ 



For R=0.2 jets with 75 GeV< $E_{T}$ <100GeV peak at A<sub>J</sub>~ 0.55.

This corresponds to  $E_{T,2}$  ~20 GeV.

With increasing  $E_{T,2}$ :

approximately at the same E<sub>T,2</sub> but larger A<sub>J</sub>

**Decreasing centrality** 



#### Study of Background Fluctuations

- Study physics of underlying event fluctuations → it can provide a basic information about correlations in the underlying event.
- Independent validation of JER.
- The size of fluctuations is characterized by standard deviation  $\sigma = \sqrt{\langle E_T^2 \rangle - \langle E_T \rangle^2}$  and plotted as a function of FCal  $\Sigma E_{\tau}$ .
- A very good agreement between data and MC.







### **Background Fluctuations**



- Fluctuations are measured in single towers and also in larger windows comparable to the area of jet:
  - 7x7 towers ~ R = 0.4 jets.
  - 4x3 towers ~ R = 0.2 jets.



- An agreement between data and MC is better than 5% for R=0.2 jets.
- Fluctuations in data are at most 5% higher than in MC for R=0.4 jets.
- Fluctuations are higher in MC in the most central events.









- HIJING over-predicts the size of upward fluctuations.
- HIJING over-predicts the size of downward fluctuations in central collisions.
- Where the spread in fluctuations is larger in data than in MC it is because data has larger downward fluctuations.





# **Physics of Jet Quenching**



- Measurement of an inclusive jet production is another probe of jet quenching.
- The jet suppression is quantified by  $R_{CP}^{}$  central to peripheral ratio defined as  $R_{CP}^{} = \frac{1/N_{coll}^{cent}}{1/N_{coll}^{periph}} \frac{1/N_{evnt}^{cent} dN/dE_{T}}{1/N_{evnt}^{periph} dN/dE_{T}}$
- Some predictions of radiative energy loss suggest that energy can be recovered by expanding the jet cone.
- We measured R<sub>CP</sub> for different jet radii to study the role of radiative energy loss.
- We identify and reject "fake" jets UE fluctuations from soft particles by requirement of matching calorimeter jet to a track jet or EM cluster above 7 GeV.
  - Arr Measurement is restricted to  $|\eta| < 2.1$
  - Efficiency η~80% at 50 GeV.
  - Residual fake rate estimated to be  $\sim 2\%$  at 50 GeV.



14

#### Performance of the Jet Reconstruction



 Performance is evaluated using pp hard scattering events from Pythia overlying on top of HIJING MB events without quenching.



- JER is well described by  $\sigma(\Delta E_T)/E_T = 1/E_T(a.\sqrt{E_T}+b+c.E_T)$ where parameter *b* is consistent with the result from the fluctuation analysis.
- The performance have been also verified using data overlay with similar results.



15

#### **Jet Spectra and Unfolding**



- SVD unfolding was used to account effect of bin migration caused by detector and UE effects.
- MC overlay samples were used to generate response matrix
- Several checks have been performed.



- Small effect on R=0.2 jets.
- $R_{CP}$  is reduced for R=0.4 by factor of two for low  $E_{T}$  jets.



#### **Centrality Dependence of Jet R**





- Factor of 2 suppression in central with respect to peripheral collisions.
  Increasing suppression with increasing centrality.
- The increase is linear for high  $p_{\tau}$ , quick turns on at low  $p_{\tau}$ .
- Similar result is observed also for other jet radii.



 $\rightarrow$  The jet suppression factor shows small variation with the jet  $p_{\tau}$ .



Ъ

0.5

0.5

0.5

0.5

0

# Jet R<sub>CP</sub> as a Function of Jet Radius



- Weak dependence on jet radius is observed.
- A small difference is present only at very low  $p_{\tau}$ .



19

#### Jet Fragmentation: Longitudinal Structure





- Charged hadrons with  $p_{-}>2$  GeV.
- UE contributions is subtracted.
- No correction for resolution is applied.



#### Jet Fragmentation: Longitudinal Structure



#### R=0.2

**R=0.4** 

- No strong modification of fragmentation functions in central collisions with respect to peripheral ones.
- Possibly mild suppression at intermediate z (0.05-0.3) and enhancement at very low z (<0.05).</p>



#### Jet Fragmentation: Transverse Fragmentation Function

Characterized by  $\mathbf{j}_{\mathbf{T}}$  distribution: transverse momentum of charged particles:

 $D(j_T) = (1/N_{jet})(1/j_T) dN/dj_T$  , where  $j_T = p_T^{had} \sin \Delta R$ 

Axis of R=0.4 jet is replaced by axis of the nearest R=0.2 jet with  $E_{\tau} > 25$  GeV which has better position resolution.





#### Jets in 2011 HI run

120 140 Offline Jet E<sub>7</sub> [GeV]



Total Integrated Luminosity [ub<sup>-1</sup>] ATLAS Online Luminosity  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 12 LHC Delivered (Pb+Pb) 17x more 10 ATLAS Recorded data! Total Delivered: 9.69 ub<sup>-1</sup> 8 Total Recorded: 9.17 ub<sup>-1</sup> 6 2010 02/11 09/11 16/11 23/11 07/12 30/11 Day in 2010 1.2 Efficiency ATLAS Preliminary Pb+Pb √s<sub>NN</sub>= 2.76 TeV 0.8 20 GeV E<sub>T</sub> threshold 0.6 anti-k<sub>T</sub> R=0.2 0.4 Centrality 0.2 40-60% 60-100% 00



- Jets were recorded using HLT algorithm.
- Similar background subtraction procedure as used in offline algorithm was performed in HLT.
- Efficiency is centrality independent.

20

40

60

80

100



#### Conclusions



- Energy imbalance in the di-jet system is strongly increasing with increasing centrality.
- Suppression by a factor of 2 is observed in jet yield in central with respect to peripheral collisions.
- The dependence of the jet suppression is very weak on jet  $p_{\tau}$  and jet size except low  $p_{\tau}$  region.
- Study of jet structure show no significant broadening of  $j_{T}$  distribution and small modification of longitudinal fragmentation functions.
- New interesting results from 2011 run are expected!











#### **ATLAS Detector Status**



| Subdetector                      | Number of Channels | Approximate Operational Fraction |
|----------------------------------|--------------------|----------------------------------|
| Pixels                           | 80 M               | 95.9%                            |
| SCT Silicon Strips               | 6.3 M              | 99.3%                            |
| TRT Transition Radiation Tracker | 350 k              | 97.5%                            |
| LAr EM Calorimeter               | 170 k              | 99.9%                            |
| Tile calorimeter                 | 9800               | 99.5%                            |
| Hadronic endcap LAr calorimeter  | 5600               | 99.6%                            |
| Forward LAr calorimeter          | 3500               | 99.8%                            |
| LVL1 Calo trigger                | 7160               | 100%                             |
| LVL1 Muon RPC trigger            | 370 k              | 98.4%                            |
| LVL1 Muon TGC trigger            | 320 k              | 100%                             |
| MDT Muon Drift Tubes             | 350 k              | 99.7%                            |
| CSC Cathode Strip Chambers       | 31 k               | 97.7%                            |
| <b>RPC Barrel Muon Chambers</b>  | 370 k              | 93.8%                            |
| TGC Endcap Muon Chambers         | 320 k              | 99.7%                            |

# R<sub>CP</sub> – R dependence



# R<sub>CP</sub> – Systematics



JES: Relative energy scale differences central and peripheral

JER: Possible disagreement between data and MC in UE fluctuations Efficiency: cover possible MC/data differences, 5% for pT < 100 GeV

Xini: Sensitivity to power in power law: +0.5, -0.5  $R_{coll}$ : sensitive to centrality determination,  $\sigma_{_{NN}}$  Regularization:

Sensitivity to choice of k:+/-1



# Comparison R<sub>CP</sub> from Charged Particle and Jets





 $R_{CP}$  from charged particles and jets are of similar magnitude.



#### R=0.2: do distribution







#### Di-jet Analysis: R=0.2 jets





Two times smaller effect of underlying event fluctuations

0.4

0.2

Strong asymmetry modification is still observed.



#### Subtracted E<sub>+</sub>



Mean subtracted energy as a function of asymmetry



- no asymmetry dependence
- amount of subtracted energy for leading and sub-leading jet is comparable

#### Transverse Energy in 1x1 tower window

