Measurements of the inclusive jet cross-section and jet fragmentation in pp collisions with the ALICE experiment at the LHC

Rongrong Ma, on behalf of ALICE Collaboration Yale University 05/28/2012, Cagliari, Italy

Outline

- Motivation
- ALICE detector
- Inclusive jet cross-section in pp $\sqrt{s} = 2.76$ TeV
 - Analysis roadmap
 - Comparison to theory
- Charged jet fragmentation in pp $\sqrt{s} = 7$ TeV
 - Momentum distribution of charged particles inside of jet cone
- Summary

Motivation

- Inclusive jet cross-section in pp $\sqrt{s} = 2.76$ TeV
 - Important reference for Pb-Pb measurements at the same $v_{NN} = 2.76 \text{ TeV}$
 - Test of pQCD calculations at a new √s
- Charged jet fragmentation in pp $\sqrt{s} = 7$ TeV
 - Baseline for modification of the jet profile in Pb-Pb

Dataset and Triggers

- pp √s = 2.76 TeV
 - Run in March 2011
 - Minimum-bias: 0.4 nb⁻¹
 - EMCal-L0 trigger: 4x4 towers with 3 GeV threshold: 11 nb⁻¹
- pp √s = 7 TeV
 - Run in 2010
 - Minimum-bias: 4.5 nb⁻¹

Inclusive jet cross-section in pp $\sqrt{s} = 2.76$ TeV

Input to jet finder

- Charged tracks measured in the tracking system above 150 MeV/c
- **EMCal clusters** -> EM or hadronic showers
 - Hadronic correction to EMCal energy
 - Charged particles also deposit energy in EMCal
 - Match track-cluster and subtract track momentum from the associated cluster. (E_{subtracted}>0)
 - Correction for multiple particles in cluster: <5% (via simulation)
- Jet reconstruction: FASTJET package
 - anti- k_{T} algorithm
 - Boost-invariant recombination scheme (jets have zero mass)
 - R=0.2, 0.4
 - Fiducial cut in EMCal acceptance and $z_{leading} < 0.98$

EMCal-L0 trigger bias: data vs simulation

- Need to correct trigger bias on jet population to extract cross-section
- Left: trigger efficiency for EMCal clusters (trigger object) -> Good agreement of data + simulation over 4 orders of magnitude
- Right: trigger efficiency for reconstructed jets -> agreement within statistical precision of Minimum-bias data -> assign 10% systematic uncertainty

Detector effects correction

- Bin-by-bin technique
 - Determined by comparing the cross-section on the Particle level to the Detector level in simulation
 - Use uncorrected spectrum in data as weight function
- Shift of jet energy scale ~ 20-25%
 - Unmeasured neutrons and K⁰^L's: compare proton and kaon spectra to data; PYTHIA vs HERWIG
 - Tracking inefficiency: track quality in data vs simulation
 - Residual hadronic correction for EMCal: data-driven check
 - JES uncertainty ~ 4%
- Jet energy resolution ~ 18%
 - Detector resolution: data-driven check + test beam
 - Fluctuations (e-by-e) in correction of jet energy scale

Jet Neutral Energy Fraction: data vs simulation

- Compare the neutral energy fraction (NEF) distribution between data and Detector Level simulation in different jet p_T bins
- Good agreement within the statistical precision

Inclusive jet cross-section in pp $\sqrt{s} = 2.76$ TeV (R=0.4)

Good agreement between data and NLO calculations as well as Pythia8 prediction within both experimental and theoretical uncertainties

Inclusive jet cross-section in pp $\sqrt{s} = 2.76$ TeV

R=0.2

R=0.4

Ratio of jet cross-sections R=0.2/R=0.4

Probe of jet structure

- NLO ratio is equivalent to ratio of cross-sections calculated individually at NNLO
- Good agreement between data and NLO+hadronization^[1] within both experimental and theoretical uncertainties

[1] G. Soyez, "A simple description of jet cross-section ratios", Phys.Lett. B698 (2011) 59 5/28/12 Rongrong Ma, Hard Probes, Cagliari, Italy

Charged jet fragmentation in pp $\sqrt{s} = 7$ TeV

More details in Poster #3.5 by O. Busch

Analysis setup

- Only charged tracks above 150 MeV/c are fed into jet finder
- Jet reconstruction
 - anti- k_T with R=0.4. Fiducial cut of $|\eta| < 0.5$
- Use the leading jet in each event and collect all the charged tracks in cone of 0.4 around the jet axis
- Jet fragmentation variables:
 - \mathbf{p}_{T} distribution of the charged tracks in the jet cone
 - Scaled momentum distribution: dN/dξ, ξ=ln(p_T^{jet}/p_T^{track})
- Corrections
 - Underlying event from initial state radiation, beam remnants, etc: use track density perpendicular to the jet cone
 - Secondaries from weak decays, conversions, etc: *use simulation*
 - Detector effects of tracking efficiency and tracking resolution: use simulation -> bin-by-bin technique

Charged jets: p_T distribution of charged particles

- Pythia (Perugia0) agrees well with data above 1 GeV/c
 - Agreement improved after underlying event subtraction

Charged jets: $dN/d\xi$ distribution of charged particles

- "Hump-backed plateau" structure
- Particle yield (area under the dN/d ξ distributions) increases as jet p_T increases

Summary

- First measurement of jet cross-section for pp Vs = 2.76 TeV
 - The measured cross-sections with two different radii are in agreement with NLO+hadronization calculation as well as PYTHIA8 prediction within uncertainties
 - The ratio of the cross-sections agrees well with NLO +hadronization
- Measurement of charged jet fragmentation in pp Vs = 7 TeV
 - PYTHIA agrees well with data above 1 GeV/c
 - Next: comparison to theory (e.g. MLLA)
- Important reference for upcoming heavy ion jet results.
- Thanks to N. Armesto and G. Soyez for providing the theoretical calculations.

Backup

Jet reconstruction

- Full jet reconstruction collects all the hadrons originate from the parent parton
 - Enables reconstruction of the initial parton scattering kinematics
 - Enables a direct study of the jet-quenching, compared to the hadronic variables, such as R_{AA}, di-hadron correlation, etc.
- Challenge: enormous background in HI collisions
 - LHC 2.76TeV Pb+Pb: ~100 GeV/unit area
- Jet reconstruction algorithm: anti- k_{T}
 - Starts from high- p_T particles
 - Sequentially combines all the particles into jets
 - Insensitive to soft and collinear radiation

Charged track p_T resolution

Jet Energy Scale

- Shift of jet energy scale ~ 20-25%
 - Unmeasured energy of neutrons and K⁰_L
 - Measured spectra of protons and Kaons are conssitent with simulation
 - Compare PYTHIA vs HERWIG: < 1% uncertainty on JES
 - Tracking inefficiency
 - Track quality in data vs simulation by varying track cuts.
 5% uncertainty on tracking efficiency -> 2-3% uncertainty on JES
 - Residual hadronic correction for EMCal
 - Data-driven check: <1% uncertainty on JES
- JES uncertainty: ~4%

EMCal resolution and non-linearity

- Left plot: relative energy resolution. For cluster E > 5 GeV, $\sigma_{E}/E < 5\%$
- Right plot: non-linearity is small for cluster with 2 < E < 100 GeV
- Used to tune simulation

Bin-by-bin correction

