Measurement of heavy-flavour decay muon production at forward rapidity in pp and Pb-Pb collisions at $\sqrt{s_{NN}}=2.76~\text{TeV}$ with the ALICE experiment

D. Stocco for the ALICE Collaboration

SUBATECH (Ecole des Mines, CNRS-IN2P3, Université de Nantes) Nantes, France

Hard Probes 2012

5th international Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions 27 May – 1 June 2012. Cagliari (Sardinia, Italy)

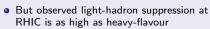
- Introduction
 - Motivations
 - Experimental setup
- 2 Reference: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
 - Analysis strategy
 - ullet p_{t} differential cross-section in 2.5 < y < 4
- Nuclear modification factors
 - Analysis strategy in PbPb collisions
 - ullet R_{AA} vs. $p_{
 m t}$ and centrality (6 < $p_{
 m t}$ < 10 GeV/c) in 2.5 < y < 4
- 4 Conclusions

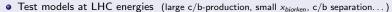
- Introduction
 - Motivations
 - Experimental setup
- 2 Reference: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
 - Analysis strategy
 - $p_{\rm t}$ differential cross-section in 2.5 < y < 4
- Nuclear modification factors
 - Analysis strategy in PbPb collisions
 - ullet R_{AA} vs. $p_{
 m t}$ and centrality (6 $< p_{
 m t} <$ 10 GeV/c) in 2.5 < y < 4
- 4 Conclusions

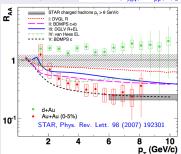
Heavy flavours in AA collisions

- A tomographic probe of the medium:
 - produced at the beginning of the collision (large mass)
 - experience the medium evolution (long lived)
 - lose energy in the medium (strong interaction)

$$R_{AA}(p_t) = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_t}{d\sigma_{pp}/dp_t}$$

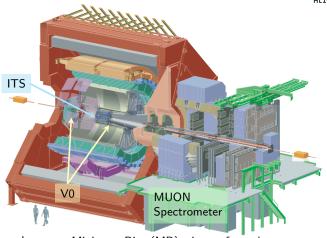

ullet Heavy-flavour decay electrons are suppressed at high- p_{t} at RHIC


 A hierarchy on energy-loss is expected on theoretical ground (color-charge and dead-cone effects):


$$\Delta E_g > \Delta E_{q/c} > \Delta E_b$$

$$R_{AA}{}^h < R_{AA}{}^D \ < R_{AA}{}^B$$

[Dokshitzer and Kharzeev, PLB 519 (2001) 199 Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003 Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]



Heavy flavours in pp collisions

- Reference for AA studies
- Test pQCD in a new energy domain

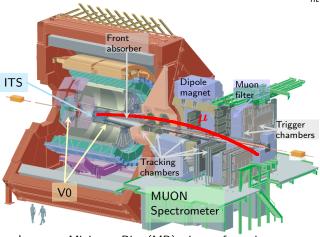
See also C. Geuna's talk

 Centrality selection based on a geometrical Glauber model fit of the V0 scintillators amplitude

- Minimum-Bias (MB) triggers from the coincidence of V0 & SPD (Silicon Pixel Detector)
- Muon triggers in pp

Analyzed data				
	pp @ 2.76 TeV (2011)	PbPb @ 2.76 TeV (2010)		
\mathcal{L}_{int}	$19~{ m nb}^{-1}$	$2.7 \ \mu b^{-1}$		

ALICE layout


Muon Spectrometer

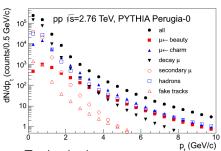
- Coverage: $-4 < \eta^{\mu} < -2.5$
- momentum: $p^{\mu}\gtrsim 4~{
 m GeV}/c$

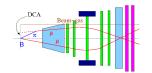
Min. muon

 $\begin{aligned} & \bullet & \text{Min. } p_{\rm t} \text{ for} \\ & \text{trigger:} \\ & p_{\rm t}^{\mu} \gtrsim 0.5 \text{ GeV/}c \end{aligned}$

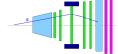
 Centrality selection based on a geometrical Glauber model fit of the V0 scintillators amplitude

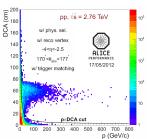
- Minimum-Bias (MB) triggers from the coincidence of V0 & SPD (Silicon Pixel Detector)
- Muon triggers in pp


Analyzed data				
	pp @ 2.76 TeV (2011)	PbPb @ 2.76 TeV (2010)		
\mathcal{L}_{int}	$19~{ m nb}^{-1}$	$2.7 \ \mu b^{-1}$		

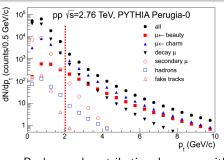

- Introduction
 - Motivations
 - Experimental setup
- 2 Reference: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
 - Analysis strategy
 - ullet p_{t} differential cross-section in 2.5 < y < 4
- Nuclear modification factors
 - Analysis strategy in PbPb collisions
 - ullet R_{AA} vs. $p_{
 m t}$ and centrality (6 $< p_{
 m t} <$ 10 GeV/c) in 2.5 < y < 4
- 4 Conclusions

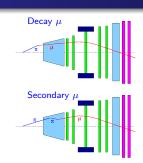
Analysis strategy (I)

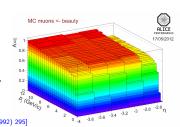


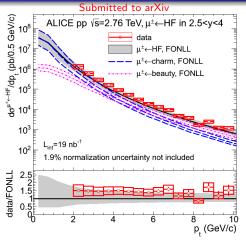


- Track selection:
 - match track with tracklets in the trigger chambers ⇒ reject punch-through hadrons
 - cut on p × DCA of the tracks ⇒ reject tracks from beam-gas interaction


- Track selection
- Background subtraction
- Acceptance × efficiency correction
- Cross-section estimation

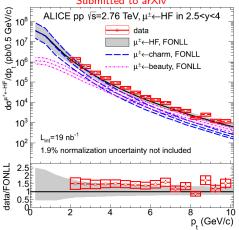



Analysis strategy (II)



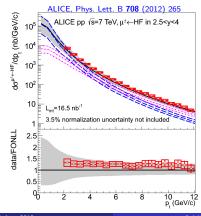
- Background contribution decreases with $p_{\rm t}$: focus on $p_{\rm t} > 2~{\rm GeV}/c$
- ullet Main background component: decay μ (\sim 40% for $p_{
 m t} > 2$ GeV/c)
- Subtraction using as input MC simulations
- Systematic uncertainties:
 - models: estimated using different MC inputs (Pythia-Perugia0, Phojet)
 - transport: estimated by varying the secondary μ production by 100%
- Bi-dim. Acc. \times Eff. correction from MC simul. of **full detector** based on a parameterization of the $p_{\rm t}$ and y differential cross sections of b-quark from MNR [Mangano, Nason, Ridolfi, Nucl. Phys. B 373 (1992) 295]

Cross section of muons from heavy-flavour decay


Systematic uncertainties		
Alignment	$1\% imes p_{ m t}$ (in GeV/c)	
Detector response	3%	
Bkg. subtraction:	13%	
model		
Bkg. subtraction:	5-20%	
transport	depending on $p_{ m t}$	

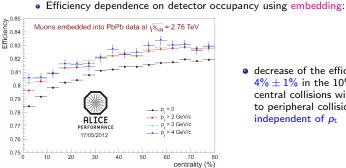
Well described by FONLL pQCD calculations within errors

Cross section of muons from heavy-flavour decay



Systematic uncertainties				
Alignment	$1\% imes p_{ m t}$ (in GeV/c)			
Detector response	3%			
Bkg. subtraction:	13%			
model				
Bkg. subtraction:	5-20%			
transport	depending on $p_{ m t}$			

- Well described by FONLL pQCD calculations within errors
- Similar result obtained in pp collisions at $\sqrt{s} = 7 \text{ TeV}$



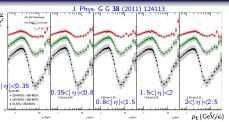
- Introduction
 - Motivations
 - Experimental setup
- 2 Reference: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
 - Analysis strategy
 - $p_{\rm t}$ differential cross-section in 2.5 < y < 4
- Nuclear modification factors
 - Analysis strategy in PbPb collisions
 - ullet R_{AA} vs. $p_{
 m t}$ and centrality (6 $< p_{
 m t} <$ 10 GeV/c) in 2.5 < y < 4
- 4 Conclusions

Analysis strategy in PbPb collisions

- Track selection as in pp collisions
- Correction of inclusive muon yields:
 - Bi-dim. Acc.×Eff. correction from MC simulations of full detector based on a param. of the p_t and y differential cross sections of b quark from MNR

 decrease of the efficiency by $4\% \pm 1\%$ in the 10% most central collisions with respect to peripheral collisions, independent of pt

Calculate R_{AA} as:


$$\mathsf{R}_{\mathsf{A}\mathsf{A}}(p_{\mathrm{t}}) = \frac{1}{\langle \mathsf{T}_{\mathsf{A}\mathsf{A}} \rangle} \frac{\mathsf{d} \mathit{N}_{\mathit{A}\mathit{A}}^{\mu \, \mathsf{inclusive}} / \mathsf{d} p_{\mathrm{t}} - \mathsf{d} \mathit{N}_{\mathit{A}\mathit{A}}^{\mu \leftarrow \pi/\mathsf{K}} / \mathsf{d} p_{\mathrm{t}}}{\mathsf{d} \sigma_{pp}^{\mu \leftarrow \mathsf{HF}} / \mathsf{d} p_{\mathrm{t}}}$$

• Estimation of the (background) contribution of muons from light hadron decay $(dN_{\Delta\Delta}^{\mu\leftarrow\pi/K}/dp_t)$: data driven method

Background subtraction strategy in PbPb collisions

 ATLAS results suggest small dependence of R_{CP} of charged hadrons with rapidity \Rightarrow assume no dependence up to v = 4

Estimate $d\sigma_{pp}^{\mu \leftarrow \pi/K}/dp_t$ at forward rapidity in pp collisions:

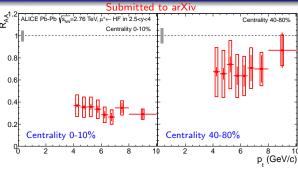
- input: π, K distributions measured in pp collisions at central rapidities [J.Phys.G G 38 (2011) 124014]
- extrapolate to forward rapidities via [PHENIX, PRD 76 (2007) 092002]:

$$\frac{\mathrm{d}^2 N_{pp}^{\pi,\mathrm{K}}}{\mathrm{d} p_{\mathrm{t}} \mathrm{d} y} = \left[\frac{\mathrm{d}^2 N_{pp}^{\pi,\mathrm{K}}}{\mathrm{d} p_{\mathrm{t}} \mathrm{d} y} \right]_{y=0} \exp(\frac{-y^2}{2\sigma_y^2}) \qquad \qquad \text{with } \sigma_y = 3.18 \text{ estimated from PYTHIA and Phojet (error } \sim 15\%)$$

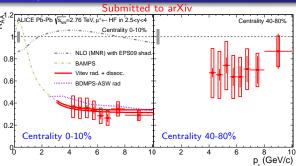
fast MC for generation of decay muon

Estimate $dN_{AA}^{\mu\leftarrow\pi/K}/dp_t$ at forward rapidity in PhPb collisions

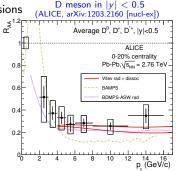
- input: RAA T, K measured at central rapidities [J.Phys.G G 38 (2011) 124014 and 124080]
- get the $dN_{AA}^{\pi,K}/dp_t$ of pions at forward rapidities via: $dN_{AA}^{\pi,K}/dp_{t} = \langle \mathsf{T}_{\mathsf{AA}} \rangle \cdot d\sigma_{pp}^{\pi,K}/dp_{t} \cdot \left[\mathsf{R}_{\mathsf{AA}}^{\pi,K} \right]$
- fast MC for generation of decay muon
- systematic (unknown quenching at forward v): vary input $R_{AA}^{\pi,K}$ by $\pm 100\%$

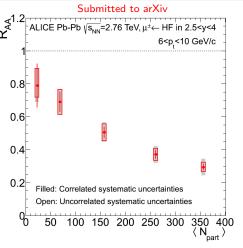

Systematic uncertainties for the nuclear modification factor

 \bullet Focus on the region $p_{\rm t} > 4~{\rm GeV/}c$ to limit the systematics from background subtraction


pp reference				
Detector response	3%			
Alignment	$1\% imes p_{ m t}$ (in GeV/ c)			
Bkg. subtraction	1417% (depending on $p_{ m t}$)			
Inclusive muon yields in PbPb collisions				
Detector response	3.5%			
Alignment	$1\% imes p_{ m t}$ (in GeV/c)			
Centrality dependence of efficiency	1%			
Decay muon background in PbPb collisions				
$d\sigma^{\mu\leftarrow\pi/K}/d extcolor{p}_{\mathrm{t}}$ in pp	17%			
$R_{AA}^{\mu \leftarrow \pi/K}$	14–17%			
$R_{AA}^{\mu \leftarrow \pi/K}/R_{AA}^{\mu \leftarrow \pi}$	up to 9% at $ ho_{ m t}=10$ GeV/ c			
Unknown quenching at forward y	bkg. contrib. from 0 to 14% (21%)			
(varying $R_{AA}^{\mu\leftarrow\pi/K}$ of $\pm 100\%$)	in central (peripheral) collisions			
Normalization				
pp cross-section @ 2.76 TeV	1.9%			
$\langle T_AA angle$	4-7% (depending on centrality)			

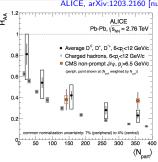
- Larger suppression in central than peripheral collisions
- No significant dependence on p_t

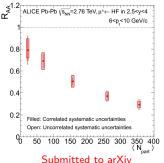

- Empty boxes: uncorrelated systematic uncertainties
- $\begin{tabular}{ll} \bullet & \mbox{Filled box at 1:} \\ \mbox{correlated systematic} \\ \mbox{uncertainty on pp} \\ \mbox{normalization and $\langle T_{AA} \rangle$} \\ \end{tabular}$

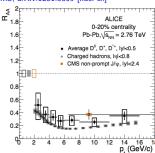

- Empty boxes: uncorrelated systematic uncertainties
- Filled box at 1: correlated systematic uncertainty on pp normalization and \(T_{AA} \)

• Larger suppression in central than peripheral collisions

- No significant dependence on p_t
- Small contribution of shadowing expected
- BAMPS [Uphoff,Fochler,Xu,Greiner,arXiv:1205.4945v1 [hep-ph]]
 calculation reproduce the muon data (but tends
 to underestimate D meson R_{AA} at mid-rapidity)
- Radiative energy loss + dissociation
 [Sharma,Vitev,Zhang,PRC 80 (2009) 054902] and BDMPS-ASW
 [Armesto,Dainese,Salgado,Wiedemann, PRD 71 (2005) 054027], in
 agreement with both muons and D meson data


- Empty boxes: uncorrelated systematic uncertainties
- Filled boxes: uncertainty on pp reference and normalization


- Results obtained for $p_{\rm t} > 6$ GeV/c: region dominated by beauty production, according to FONLL
- Strong increase of suppression with centrality, down to a factor of 3-4 in the 10% most central collisions


Comparison with other LHC results

ALICE, arXiv:1203.2160 [nucl-ex] and CMS, arXiv:1201.5069 [nucl-ex]

- Strong suppression measured at mid-rapidity in central collisions for:
 - D meson at mid-rapidity in $6 < p_t < 12 \text{ GeV}/c$
 - charged hadrons at mid-rapidity in $6 < p_t < 12 \text{ GeV}/c$
 - non-prompt J/ ψ in |y| < 2.4 and 6.5 < $p_{\rm t} <$ 30 GeV/c
- Muons from heavy-flavour decay exhibit a similar suppression although in a different rapidity range

- Introduction
 - Motivations
 - Experimental setup
- 2 Reference: pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$
 - Analysis strategy
 - ullet $p_{\rm t}$ differential cross-section in 2.5 < y < 4
- Nuclear modification factors
 - Analysis strategy in PbPb collisions
 - ullet R_{AA} vs. $p_{
 m t}$ and centrality (6 < $p_{
 m t}$ < 10 GeV/c) in 2.5 < y < 4
- Conclusions

Conclusions

• First measurement of muons from heavy-flavour decay at forward rapidities (2.5 < y < 4) in pp and PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Heavy flavours in pp collisions

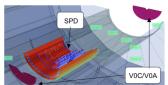
Comparison with FONLL pQCD predictions: good agreement within errors

Heavy flavours in PbPb collisions

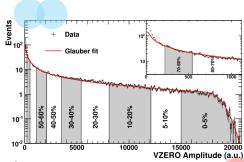
- \bullet R_{AA} of muons from heavy-flavour decay measured as a function of transverse momentum and centrality:
 - no significant dependence with $p_{\rm t}$ in 4 $< p_{\rm t} <$ 10 GeV/c
 - strong suppression with centrality (up to a factor of 3-4)
- Same suppression pattern as the one measured for D mesons at mid-rapidity (|y| < 0.5, $6 < p_{\rm t} < 12~{\rm GeV/}c$) and of non-prompt J/ ψ in a wider rapidity range (|y| < 2.4, $6.5 < p_{\rm t} < 30~{\rm GeV/}c$)

Perspectives:

- Measurement of the muon v2 in Pb–Pb collisions at $\sqrt{s_{NN}}=2.76~\text{TeV}$
- Measurement in p-Pb, Pb-p collisions: cold nuclear matter effects

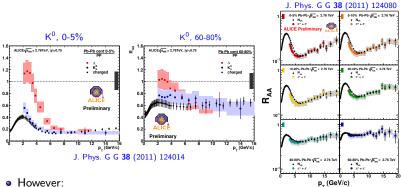

D. Stocco Hard Probes 2012 27 May - 1 Jun. 2012 17

Backup slides


Centrality selection

 Minimum-bias triggers from the coincidence of SPD & V0A & V0C

 Centrality selection based on a geometrical Glauber model fit of the V0 amplitude


Centrality	$\langle N_{\rm part} \rangle$	$ \langle T_{AA} \rangle mb^{-1}$
0-10%	357 ± 4	23.48 ± 0.97
10-20%	261 ± 4	14.43 ± 0.57
20-40%	157 ± 3	6.85 ± 0.28
40-60%	69 ± 2	2.00 ± 0.11
60–80%	23 ± 1	0.42 ± 0.03
40-80%	46 + 2	1.20 ± 0.07

Centrality classes used in this analysis

Further on background subtraction

- Mid-rapidity π^{\pm} measured at all centralities and up to $p_{\rm t}=20~{
 m GeV}/c$
- K^{\pm} measured only at low $p_t \Rightarrow$ use K^0 , considering $N(K^+) + N(K^-) = 2N(K^0)$
- Issue: K^0 measured only in 0-5% and 60-80%

- - Small dependence with pt
 - Similar R_{AA} for kaons and pions at different centralities
- Strategy: use R_{AA} from π and correct for double ratio $R_{AA}{}^{\mu\leftarrow\pi}/R_{AA}{}^{\mu\leftarrow\pi/K}$