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Motivation !

Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine
with the help of hard probes ?
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The Setup

Hard jets described by pQCD (analytic or MC)
Factorized from soft non-perturbative medium
Medium influences jet evolution via transport coeffs.
Medium evolves hydrodynamically (most of the time)
Transport coefficients parametrized not calculated

Momentum structure unknown !

See Talk by T. Renk for other approaches
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A status report on pQCD jet modification
on a non-perturbative medium
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Versus reaction plane, versus energy

Reasonable agreement with data
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Versus reaction plane, versus energy

Reasonable agreement with data

o PHENIX 20-30%,0 < 6. < 15°
o PHENIX 20-30%,75° < 6. < 90°

HT-M with a
systematic error band
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Back to the question of how the
medium effects the parton.

A parton in a jet shower, has momentum components

q = (q9*qr) = (LA5,A)Q, Q: Hard scale, A << 1, AQ >> Aqcp

- - - - - | - - - - -
- - - - - | - - - - -
- - - - - - - - - -

hence, gluons have
kL ~AQ, kT ~ )0
could also have £ ~ AQ

GY. Qin and A. M. , arXiv: 1205.5741 [hep-ph]
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Assuming the medium has a large length.

Or, the parton has a long life time, 1/(A%Q)

Multiple independent scattering dominates over
multiple correlated scattering

Resumming gives a diffusion equation for the ptdistribution
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Gaussian distribution/temperature
dependence/fit parameter !!!

Multiple scattering off any | ¢° = 10GeV, T = 0.3GeV
distribution samples a Gaussian
Q\NTS,S,ES/4 do

dki

IS basically a model

Ultimately you have to fit the normalization to 1 data
point at one centrality, one value of pr, one HIC energy

“So, its not really first principles!”, S.S. Gubser
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A first principles method to calculate ¢
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Another first principles method to calculate qA
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Use a cut and put Final state “on-shell”

la+ k) = 5= (1% - 21 ).

Also we are calculating in a finite temperature heat bath
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physical G(qg—,q") where g7 ~ \°Q
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Consider a more general object

Q ia 47r2a8 d4yd4k€ik-y2(q_)2 <M‘F+J‘(O)Fj__,(y)‘M>
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Consider C]_large (T"Q) and fixed

Consider q+ to be a variable
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g = Im(Q) g "complex plain
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Consider the following integral
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For Qo ~ -Q, can Taylor expand Q in terms of local operators
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Deforming the contour
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set Qo = q

Taylor expand I, on the real side and do the inftegral
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Match powers of q-

in The unphysical region with that in the physical region
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Calculate local operators on the Lattice

Consider the unordered correlator
D> (t) = » (n|e P O1(t)02(0)|n)

n

convert thermal weight to evolution in imaginary time
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with time derivaives
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But local operators are easy
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Rotating everything fo
Euclidean space and calculating

) — izt andi A A
Ling FO’i i ZF4Z
Calculate in quark less SU(2) gauge theory

Turn the box into a lattice of niXns®> points
we use Wilsons gauge action
up to 5000 heat bath sweeps per point

i oW
Set fthe scale with i <1lg2> 151 o < 127r2>
Creutz formula sl Uik 11g2
Temperature 7T — : Al = 5.3 MeV
n+ar,

first operator to evaluate T ptt _, fotpst . patpd
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The measurements
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Concluding and Extrapolating !

Need to calculate in SU(3)

Better renormalization prescription

More complicated processes on the lattice

Need to do a higher order perturbative calculation
But lets estimate anyways

at T=363, FF = 0.04 GeV*
Lattice size =~ 2fm, E = 20 GeV, p? = 1.3 GeV?

Gluon q is Ca/Cr of quark g

SU(2) has 3 gluons, SU(3) has 8§,
and 6 quarks + antiquarks

§(T = 363MeV) = 3.7GeV? /fm — 6.5GeV* /fm
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Back up!




What is our status

Assume factorization

Parametrized our lack of knowledge about the medium

Effect of medium on parton in terms of jet transport coeffs

<p52r>L Transverse momemtum
b diffusion rate

Elastic energy loss rate
also diffusion rate e:

Gluon radiation is
sensitive to all these
transport coefficients
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