

Calculating the jet quenching parameter \hat{q} in lattice gauge theory

Abhijit Majumder
Wayne State University

Hard Probes 2012, Cagliari, Italy

Motivation !

Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine with the help of hard probes ?

$$
m_{D}=-\lim _{|x| \rightarrow \infty} \frac{1}{} \ln \ln \left\langle E^{a}(x) E^{a}(0)\right\rangle
$$

$$
\Pi_{\mathrm{em}}^{\mu v}(k)=\int d^{4} x e^{i k x}\left\langle j^{\mu}(x) j^{v}(0)\right\rangle
$$

$$
\begin{aligned}
& \hat{q}=\frac{4 \pi^{2} \alpha_{s} C_{R}}{N_{c}^{2}-1} \int d y^{-}\left\langle F^{a+i}\left(y^{-}\right) F_{i}^{a+}(0)\right\rangle \\
& \hat{e}=\frac{4 \pi^{2} \alpha_{s} C_{R}}{N_{c}^{2}-1} \int d y^{-}\left\langle\partial \partial^{-} A^{a+}\left(y^{-}\right) A^{a+}(0)\right\rangle \\
& \hat{e}_{2}=\frac{4 \pi^{2} \alpha_{s} C_{R}}{N_{c}^{2}-1} \int d y^{-}\left\langle F^{a+-}\left(y^{-}\right) F^{a+-}(0)\right\rangle
\end{aligned}
$$

Color screening: Quarkonium states

QGP Radiance: Lepton pairs, photons

Momentum diffusion: parton energy loss, jet quenching

The Setup

Hard jets described by PQCD (analytic or MC)
Factorized from soft non-perturbative medium
Medium influences jet evolution via transport coeffs.
Medium evolves hydrodynamically (most of the time)

Transport coefficients parametrized not calculated
Momentum structure unknown !

See Talk by T. Renk for other approaches

A status report on PQCD jet modification on a non-perturbative medium

Fit the \hat{q} at initial T in the hydro in central coll.

$$
\begin{gathered}
\hat{q}(\vec{r}, t)=\hat{q}_{0} \frac{s(\vec{r}, t)}{s_{0}} \\
s_{0}=s\left(T_{0}\right) \\
R_{A A} \sim \frac{\frac{d N_{A A}}{d p_{T} d y}}{N_{b i n} \frac{d N_{p p}}{d p_{T} d y}}
\end{gathered}
$$

Versus reaction plane, versus energy

Reasonable agreement with data

See talk by B. Mueller

Versus reaction plane, versus energy

Reasonable agreement with data

See talk by B. Mueller

Note: no refitting between RHIC and LHC.

Back to the question of how the medium effects the parton.

A parton in a jet shower, has momentum components $q=\left(q^{-}, q^{+}, q T\right)=\left(1, \lambda^{2}, \lambda\right) Q, Q:$ Hard scale, $\lambda \ll 1, \lambda Q \gg \Lambda_{Q C D}$

hence, gluons have

$$
k_{\perp} \sim \lambda Q, \quad k^{+} \sim \lambda^{2} Q
$$

could also have $k^{-} \sim \lambda Q$
G.Y. Qin and A. M. , arXiv: 1205.5741 [hep-ph]

Assuming the medium has a large length.

Or, the parton has a long life time, $1 /\left(\lambda^{2} Q\right)$
Multiple independent scattering dominates over multiple correlated scattering
Resumming gives a diffusion equation for the PT distribution

Assuming the medium has a large length.

Or, the parton has a long life time, $1 /\left(\lambda^{2} Q\right)$
Multiple independent scattering dominates over multiple correlated scattering
Resumming gives a diffusion equation for the pT distribution

See talk by Michael Benzke

Gaussian distribution/temperature dependence/fit parameter !!!

Multiple scattering off any distribution samples a Gaussian $\hat{q} \sim T^{3}, s, \epsilon^{3 / 4}$
is basically a model

Ultimately you have to fit the normalization to 1 data point at one centrality, one value of P_{T}, one HIC energy
"So, its not really first principles!", S.S. Gubser

A first principles method to calculate \hat{q}

(-)

$$
\begin{aligned}
W(k) & =\frac{g^{2}}{2 N_{c}} \int d^{4} x d^{4} y\left\langle q^{-} ; M\right| \bar{\psi}(y) A(y) \psi(y)\left|q^{-}+k_{\perp} ; X\right\rangle \\
& \times\left\langle q^{-}+k_{\perp} ; X\right| \bar{\psi}(x) A(x) \psi(x)\left|q^{-} ; M\right\rangle
\end{aligned}
$$

in terms of W, we get

$$
\hat{q}=\sum_{k} k_{\perp}^{2} \frac{W(k)}{t},
$$

Another first principles method to calculate \hat{q}

$$
\begin{aligned}
& \xrightarrow[(-)]{W(k)} \begin{aligned}
& =\frac{g^{2}}{2 N_{c}} \int d^{4} x d^{4} y\left(q^{-} ; M|\bar{\psi}(y) A(y) \psi(y)| q^{-}+k_{\perp} ; X\right\rangle \\
& \times\left\langle q^{-}+k_{\perp} ; X\right| \bar{\psi}(x) A(x) \psi(x)\left|q^{-} ; M\right\rangle
\end{aligned}
\end{aligned}
$$

in terms of W, we get

$$
\hat{q}=\sum_{k} k_{\perp}^{2} \frac{W(k)}{t},
$$

Use a cut and put Final state "on-shell"

$$
\delta\left[(q+k)^{2}\right] \simeq \frac{1}{2 q^{-}} \delta\left(k^{+}-\frac{k_{\perp}^{2}}{2 q^{-}}\right)
$$

Also we are calculating in a finite temperature heat bath

$$
\begin{array}{r}
\hat{q}=\frac{4 \pi^{2} \alpha_{s} \int \frac{d y^{-} d^{2} y_{\perp}}{N_{c}} d^{2} k_{\perp} e^{-i \frac{k^{2}}{2 q-} \cdot y^{-}+i \vec{k}_{\perp} \cdot y_{\perp}}}{(2 \pi)^{3}} \\
\quad\langle n| \frac{e^{-\beta E_{n}}}{Z} F^{+}{ }_{\perp}\left(y^{-}\right) F_{\perp}^{+}(0)|n\rangle
\end{array}
$$

physical $\hat{q}\left(q^{-}, q^{+}\right)$where $q^{+} \sim \lambda^{2} Q$

Consider a more general object
$\hat{Q}=\frac{4 \pi^{2} \alpha_{s}}{N_{c}} \int \frac{d^{4} y d^{4} k}{(2 \pi)^{4}} e^{i k \cdot v} \frac{2\left(q^{-}\right)^{2}}{\sqrt{2} q^{-}} \frac{\langle M| F^{+\perp}(0) F_{\perp}^{+},(y)|M\rangle}{(q+k)^{2}+i \epsilon}$.
Consider q^{-}large ($\sim Q$) and fixed
Consider q^{+}to be a variable
$\frac{d^{2} \hat{Q}}{d k_{\perp}^{2}}$ has a pole at $k^{+}=\frac{k_{\perp}^{2}}{2 q^{-}}$
\hat{Q} has a branch cut on the real axis at $\mathrm{q}^{+} \sim \lambda^{2} \mathrm{Q}$
$\hat{q}=\operatorname{Im}(\hat{Q})$
q^{+}complex plain

Consider a more general object
$\hat{Q}=\frac{4 \pi^{2} \alpha_{s}}{N_{c}} \int \frac{d^{4} y d^{4} k}{(2 \pi)^{4}} e^{i k \cdot v} \frac{2\left(q^{-}\right)^{2}}{\sqrt{2} q^{-}} \frac{\langle M| F^{+\perp}(0) F_{\perp}^{+},(y)|M\rangle}{(q+k)^{2}+i \epsilon}$.
Consider q^{-}large ($\sim Q$) and fixed
Consider q^{+}to be a variable
$\frac{d^{2} \hat{Q}}{d k_{\perp}^{2}}$ has a pole at $k^{+}=\frac{k_{\perp}^{2}}{2 q^{-}}$
\hat{Q} has a branch cut on the real axis at $\mathrm{q}^{+} \sim \lambda^{2} \mathrm{Q}$
$\hat{q}=\operatorname{Im}(\hat{Q})$
q^{+}complex plain

Consider the following integral

$$
I_{1}=\oint \frac{d q^{+}}{2 \pi i} \frac{\hat{Q}\left(q^{+}\right)}{\left(q^{+}+Q_{0}\right)}
$$

q^{+}complex plain

Qu

For $Q_{0} \sim-Q$, can Taylor expand \hat{Q} in terms of local operators

$$
I_{1}=\frac{4 \sqrt{2} \pi^{2} \alpha_{s}\langle M| F_{\perp}^{+\mu} \sum_{n=0}^{\infty}\left(\frac{-q \cdot i \mathcal{D}-\mathcal{D}^{2}}{2 q^{-} Q_{0}}\right)^{n} F_{\perp, \mu}^{+}|M\rangle}{N_{c} 2 Q_{0}}
$$

Consider the following integral

$$
I_{1}=\oint \frac{d q^{+}}{2 \pi i} \frac{\hat{Q}\left(q^{+}\right)}{\left(q^{+}+Q_{0}\right)}
$$

q^{+}complex plain

Qu

For $Q_{0} \sim-Q$, can Taylor expand \hat{Q} in terms of local operators

$$
I_{1}=\frac{4 \sqrt{2} \pi^{2} \alpha_{s}\langle M| F_{\perp}^{+\mu} \sum_{n=0}^{\infty}\left(\frac{-q \cdot i \mathcal{D}-\mathcal{D}_{\perp}^{2}}{2 q^{-}-Q_{0}}\right)^{n} F_{\perp, \mu}^{+}|M\rangle}{N_{c} 2 Q_{0}}
$$

Deforming the contour

$$
\begin{gathered}
I_{1}=\int_{-\lambda^{2} Q}^{\lambda^{2} Q} d q^{+} \frac{\hat{q}\left(q^{+}\right)}{q^{+}+Q_{0}}+\int_{0}^{\infty} d q^{+} V\left(q^{+}\right) \\
\text {set } Q_{0}=q^{-}
\end{gathered}
$$

Taylor expand I_{1} on the real side and do the integral

$$
\int_{-\lambda^{2} Q}^{\lambda^{2} Q} d q^{+} \hat{q}\left(q^{+}\right) \simeq 2 \hat{q} \lambda^{2} Q+\frac{\hat{q}^{\prime \prime}\left(\lambda^{2} Q\right)^{3}}{3}
$$

Match powers of q^{-}
in the unphysical region with that in the physical region

Calculate local operators on the Lattice

Consider the unordered correlator

$$
\mathcal{D}^{>}(t)=\sum_{n}\langle n| e^{-\beta H} \mathcal{O}_{1}(t) \mathcal{O}_{2}(0)|n\rangle
$$

convert thermal weight to evolution in imaginary time

$$
\mathcal{D}^{>}(-i \tau)=\Delta(\tau)=\operatorname{Tr}\left[e^{-\int_{0}^{\beta} d \tau H(\tau)} \mathcal{O}_{i}(\tau) \mathcal{O}_{2}(0)\right]
$$

with time derivaives

$$
\mathcal{D}^{>}(-i \tau)=i^{N_{t}} \Delta(\tau)
$$

But local operators are easy

$$
\mathcal{D}^{>}(t=0)=i^{N_{t}} \Delta(\tau=0)
$$

Rotating everything to

Euclidean space and calculating

$$
\begin{aligned}
& x^{0} \rightarrow-i x^{4} \text { and } A^{0} \rightarrow i A^{4} \\
& \rightarrow F^{0 i} \rightarrow i F^{4 i}
\end{aligned}
$$

Calculate in quark less $\operatorname{SU}(2)$ gauge theory
Turn the box into a lattice of $n_{t} X n_{s}{ }^{3}$ points we use Wilson's gauge action
up to 5000 heat bath sweeps per point
Set the scale with Creutz formula

$$
a_{L}=\frac{1}{\Lambda_{L}}\left(\frac{11 g^{2}}{24 \pi^{2}}\right)^{-\frac{51}{121}} \exp \left(-\frac{12 \pi^{2}}{11 g^{2}}\right)
$$

Temperature $T=\frac{1}{n_{t} a_{L}}$

$$
\Lambda_{\mathrm{L}}=5.3 \mathrm{MeV}
$$

first operator to evaluate

$$
F^{+i} F^{+i} \rightarrow F^{3 i} F^{3 i}-F^{4 i} F^{4 i}
$$

The measurements

Series to evaluate

$$
\langle M| F_{\perp}^{+\mu} \sum_{n=0}^{\infty}\left(\frac{-q \cdot i \mathcal{D}-\mathcal{D}_{\perp}^{2}}{2 q^{-} Q_{0}}\right)^{n} F_{\perp, \mu}^{+}|M\rangle
$$

for large q^{-}2nd operator $\sim F^{+\mu} D^{0} F^{+\mu}$

Concluding and Extrapolating !

Need to calculate in SU(3)
Better renormalization prescription
More complicated processes on the lattice
Need to do a higher order perturbative calculation But lets estimate anyways
at $\mathrm{T}=363, \mathrm{FF}=0.04 \mathrm{GeV}^{4}$
Lattice size $\sim 2 \mathrm{fm}, \mathrm{E}=20 \mathrm{GeV}, \mu^{2}=1.3 \mathrm{GeV}^{2}$
Gluon \hat{q} is C_{A} / C_{F} of quark \hat{q}
$\mathrm{SU}(2)$ has 3 gluons, $\mathrm{SU}(3)$ has 8 , and 6 quarks + antiquarks

$$
\hat{q}(T=363 \mathrm{MeV})=3.7 \mathrm{GeV}^{2} / \mathrm{fm}-6.5 \mathrm{GeV}^{2} / \mathrm{fm}
$$

Back up!

What is our status

Assume factorization

Parametrized our lack of knowledge about the medium Effect of medium on parton in terms of jet transport coeffs

$$
D\left(\frac{\vec{p}_{h}}{\left|\vec{p}+\vec{k}_{\perp}\right|}, m_{J}^{2}\right)
$$

$$
\hat{q}=\frac{\left\langle p_{T}^{2}\right\rangle_{L}}{L}
$$

Transverse momemtum diffusion rate

$$
D\left(\frac{p_{h}}{p-k}, m_{J}^{2}\right) \hat{e}=\frac{\langle\Delta E\rangle_{L}}{L}
$$

Elastic energy loss rate also diffusion rate e_{2}

Gluon radiation is sensitive to all these transport coefficients

