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Motivation !
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The Setup

Hard jets described by pQCD (analytic or MC)

Factorized from soft non-perturbative medium

Medium influences jet evolution via transport coeffs.

Medium evolves hydrodynamically (most of the time)

Transport coefficients parametrized not calculated

Momentum structure unknown !

See Talk by T. Renk for other approaches
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A status report on pQCD jet modification 
on a non-perturbative medium

RAA ⇠
dNAA
dpT dy

Nbin
dNpp

dpT dy

q̂(~r, t) = q̂0
s(~r, t)

s0

s0 = s(T0)

Fit the q at initial T in the hydro in central coll.^
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Versus reaction plane, versus energy
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See talk by B. Mueller
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See talk by B. Mueller
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Note: no refitting between RHIC and LHC.
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Back to the question of how the 
medium effects the parton. 

A parton in a jet shower, has momentum components

q = (q-,q+,qT) = (1,λ2,λ)Q,  Q: Hard scale,  λ << 1, λQ >> ΛQCD

k� � �Q, k+ � �2Q

hence, gluons have 

k� � �Qcould also have
G.Y. Qin and A. M. , arXiv: 1205.5741 [hep-ph]
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Assuming the medium has a large length. 

Or, the parton has a long life time, 1/(λ2Q)

Multiple independent scattering dominates over 
multiple correlated scattering

⇥f(p�, t)
⇥t

= ⇥p� · D ·⇥p�f(p�, t)

�p2
�⇥ = 4Dt

~ ~

Resumming gives a diffusion equation for the pT distribution
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Multiple independent scattering dominates over 
multiple correlated scattering

⇥f(p�, t)
⇥t

= ⇥p� · D ·⇥p�f(p�, t)

�p2
�⇥ = 4Dt

q̂ =
p2
?
t

=
2⇡2↵SCR

N2
c � 1

Z
dt

D
X

���Tr
h
U†(t, vt; 0)taFaµ⇢v⇢U(t, vt; 0)tbFb�

µ(0)v�

i��� X
E

.

Resumming gives a diffusion equation for the pT distribution

See talk by Michael Benzke 
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Gaussian distribution/temperature 
dependence/fit parameter !!!

d�

dk2
? C1

k4
?

C2

k2
?

q0 = 10GeV, T = 0.3GeVMultiple scattering off any 
distribution samples a Gaussian
 
q̂ ⇠ T 3, s, ✏3/4

is basically a model

Ultimately you have to fit the normalization to 1 data 
point at one centrality, one value of pT , one HIC energy

``So, its not really first principles!’’, S.S. Gubser
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A first principles method to calculate q̂

q̂ =
X

k

k2
?

W (k)
t

,

q̂ =
X

k

k2
?

W (k)
t

,in terms of W, we get

W (k) =
g

2

2Nc

Z
d

4
xd

4
yhq�;M | ̄(y) 6A(y) (y)|q� + k?;Xi

⇥ hq� + k?;X| ̄(x) 6A(x) (x)|q�;Mi

Text

(-)
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Text

(-)
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Use a cut and put Final state ``on-shell’’ 

�[(q + k)2] ' 1
2q�

�

✓
k+ � k2

?
2q�

◆
.

Also we are calculating in a finite temperature heat bath 

\delta [ (q+k)^2] \simeq \frac{1}{2q^-} \delta 

q̂ =
4⇡2↵s

Nc

Z
dy�d2y?

(2⇡)3
d2k?e

�i
k2
?

2q�
·y�+i~k?· ~y?

hn|e
��En

Z
F+,

?(y�)F+
? (0)|ni

physical q̂(q�, q+) where q+ ⇠ �2Q
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Consider a more general object

Q̂ =
4⇡2↵s

Nc

Z
d4yd4k

(2⇡)4
eik·y 2(q�)2p

2q�

hM |F+?(0)F+
?,(y)|Mi

(q + k)2 + i✏
.

Consider      large (~Q) and fixedq�

q+Consider      to be a variable

q+complex plain

 Q has a branch cut on the real 
axis at q+ ~ λ2 Q

^

q̂ = Im(Q̂)

d2Q̂

dk2
?

has a pole at k+ =
k2
?

2q�
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Consider the following integral

I1 =
I

dq+

2⇡i

Q̂(q+)
(q+ + Q0)

q+complex plain

Q0

I_{1} = \oint \frac{d q^{+}}{2 \pi i} \frac{  \hat{Q}(q^{+}) }{ \left( q^{+}  + Q_{0} \right) }

For Q0 ~ -Q, can Taylor expand Q in terms of local operators^

I1=
4
p

2⇡2↵shM |F+µ
?

1P
n=0

⇣
�q·iD�D2

?
2q�Q0

⌘n
F+
?,µ|Mi

Nc2Q0
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Deforming the contour

I1 =
Z �2Q

��2Q
dq+ q̂(q+)

q+ + Q0
+

Z 1

0
dq+V (q+)

set Q0 = q-

Taylor expand I1 on the real side and do the integral

Match powers of q-

in the unphysical region with that in the physical region

Z �2Q

��2Q
dq+q̂(q+) ' 2q̂�2Q +

q̂00(�2Q)3

3
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Calculate local operators on the Lattice

D>(t) =
X

n

hn|e��HO1(t)O2(0)|ni
Consider the unordered correlator 

convert thermal weight to evolution in imaginary time

D>(�i⌧) = �(⌧) = Tr

2

4e
�

�R

0
d⌧H(⌧)Oi(⌧)O2(0)

3

5 .

D>(�i⌧) = iNt�(⌧)
But local operators are easy

with time derivaives

D>(t = 0) = iNt�(⌧ = 0)
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Rotating everything to 
Euclidean space and calculating

x

0 ! �ix

4 and A

0 ! iA

4

! F

0i ! iF

4i

Calculate in quark less SU(2) gauge theory

F+iF+i ! F 3iF 3i � F 4iF 4ifirst operator to evaluate

Turn the box into a lattice of ntXns3 points
we use Wilson’s gauge action 

up to 5000 heat bath sweeps per point

F^{+ i} F^{+ i} \rightarrow F^{3 i} F^{3 i} - F^{4 i} F^{4 i}

aL =

1

⇤L

✓
11g2

24⇡2

◆� 51
121

exp

✓
�12⇡2

11g2

◆
,Set the scale with 

Creutz formula

T =
1

ntaL

Temperature ΛL = 5.3 MeV
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The measurements

hM |F+µ
?

1X

n=0

✓
�q · iD �D2

?
2q�Q0

◆n

F+
?,µ|MiSeries to evaluate

F+µD0F+µfor large q- 2nd operator ~ 
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Concluding and Extrapolating !

SU(2) has 3 gluons,  SU(3) has 8, 
and 6 quarks + antiquarks

Gluon q is CA/CF of quark q ^ ^

q̂(T = 363MeV) = 3.7GeV2/fm� 6.5GeV2/fm

Need to calculate in SU(3) 
Better renormalization prescription
More complicated processes on the lattice
Need to do a higher order perturbative calculation
But lets estimate anyways

at T=363, FF = 0.04 GeV4

Lattice size ~ 2fm, E = 20 GeV, μ2 = 1.3 GeV2
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Back up!
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What is our status

Transverse momemtum
diffusion rate

Elastic energy loss rate
also diffusion rate e2

Gluon radiation is 
sensitive to all these 
transport coefficients

q̂ =
�p2

T ⇥L

L

ê =
��E⇥L

L

Assume factorization

Parametrized our lack of knowledge about the medium

Effect of medium on parton in terms of jet transport coeffs
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