Reconstructed Jet Results in $p+p$, $d+Au$ and $Cu+Cu$ collisions at 200 GeV from PHENIX

Dennis V. Perepelitsa
Columbia University
for the PHENIX Collaboration

Hard Probes 2012
Cagliari, Sardinia, Italy

31 May 2012
Jet reconstruction is being done in heavy ion collisions at RHIC and the LHC:

- Reconstruct full fragmenting parton kinematics at LO.
- Sensitive probe of suppression/quenching effects.
Why Jets at RHIC?

- Complementary set of measurements from two high statistics colliders!

- Can measure jet modification at:
 - lower energies due to smaller underlying event
 - different x and Q^2 (different mixture of quark and gluon jets)

- Versatility of collision species provides:
 - ability to vary system size, energy density, geometry
 - control against cold nuclear matter effects

⇒ hard probes analyses from $Cu+Au$ and $U+U$ in progress!
PHENIX detector

- Drift Chamber (DC), Pad Chambers (PC) and Ring Imaging Čerenkov Detector (RICH) measure charged hadrons and electrons

- Electromagnetic Calorimeter (EMCal) clusters photons, π^0's, (some) neutral hadrons

- EMCal/RICH Trigger (ERT) and the high PHENIX DAQ rate allow complementary Minimum Bias and high-p_T triggered datasets
Gaussian Filter algorithm

- Seedless, cone-like algorithm with a Gaussian angular weighting (nucl-ex/0806.1499)

\[p_{T}^{\text{jet}} \equiv \max \left\{ \int \int d\eta' d\phi' p_T (\eta', \phi') e^{-(\Delta \eta^2 + \Delta \phi^2)/2\sigma^2} \right\} \]

- Developed for use in heavy ion collisions.
- Focuses on the energetic core of the jet, optimizing S/B
- Stabilizes the jet axis in the presence of background
Fake jet rejection

- Technique to separate low-\(p_T\) jets from underlying event fluctuations in HI collisions on a jet by jet basis.
- Similar to “angularly-weighted” \(p_T\) which rewards jets with a tight core of energy and punishes diffuse jets.
 - \(\Rightarrow\) efficient saturation with reconstructed \(p_T\)
 - \(\Rightarrow\) trade reconstruction efficiency for sample purity
 - \(\Rightarrow\) data-driven approaches set threshold
In PHENIX, energy “resolution” driven by tracking inefficiency, loss of n, K_L^0 neutral energy, edge of acceptance effects.

- PYTHIA Tune A 2 \rightarrow 2 QCD events from $Q^2 = 0.5$ to 64 GeV.
 - Cross-checks with HERWIG, other PYTHIA tunes
 - Embedding into real heavy ion background.

- NLO calculation + hadronization correction in progress that will allow proper comparison to data.
Demonstration of PHENIX jet reconstruction and gaussian filter algorithm capability:

- comparison with NLO pQCD across ten orders of magnitude.

Fragmentation function ($z = \frac{p_{\parallel}^{\text{particle}}}{p_{\parallel}^{\text{jet}}}$) measurement:

- required development of n-dimensional generalization of SVD unfolding in GURU!
Jets in $Cu+Cu$ at $\sqrt{s} = 200$ GeV

τ_T-feeding from underlying event:
- subtraction of centrality- and z-vertex parameterized average background

τ_T-smearing from UE fluctuations:
- evaluated through embedding $p+p$ jets into $Cu+Cu$ minimum bias events
- results shown here unfolded to $p+p$ reconstructed scale
Suppression without de-correlation in \textit{Cu+Cu}

- Suppression of reconstructed jet R_{AA}:
 - over a wide p_T range
 - increasing suppression in more central collisions

- Reconstructed di-jet $\Delta\phi$ distributions unmodified:
 - no angular de-correlation in central collisions!
Jets in $d+Au$ at $\sqrt{s} = 200$ GeV

- anti-k_T jet reconstruction with $R = 0.3, 0.5$
- Reconstructed jet R_{CP} at the $p+p$ reconstructed scale.
 - relative to peripheral collision baseline
 - p_T-feeding from modest underlying event evaluated with embedding procedure and unfolded
- Suppression effect consistent with single-particle π^0 measurement.
 ⇒ cold nuclear matter energy loss?
 ⇒ impact parameter dependence of nPDFs?
Multiple cone sizes provide additional control against effects of underlying event

R_{CP} exhibits increasing suppression with decreasing impact parameter

Ongoing improvements to analysis will produce:
- R_{dA}
- lower p_T behavior
- results at p_T^{truth} scale
nPDF effects in $d+Au \ R_{\text{CP}}$

- Nuclear PDF sets do not parameterize impact parameter dependence:
 - \Rightarrow K. Eskola, Plenary 4B and I. Helenius, Parallel VC

- Leading-order toy study with EPS09 parameters (nucl-th/1011.4534):
 - \Rightarrow quadratic b-dependence of Au nPDF from PHENIX J/ψ data, (PRL 107, 142301 (2011))
 - \Rightarrow suppression from nPDF effects underpredicts data
Outlook

- Jet reconstruction efforts at PHENIX are ongoing.
- Preliminary results from $d+Au$ jet reconstruction:
 - suppression effect at high-p_T
 - consequences for interpretation of $A+A$ results!
- PHENIX capability for jet measurements improving:
 - VTX (silicon vertex tracker) and FVTX (forward silicon vertex tracker)
Backup Plots I

PHENIX Au+Au, \(\sqrt{s_{NN}} = 200\text{ GeV}, 0-10\% \text{ most central} \)
- direct \(\gamma \) (arXiv:1205.5759)
- \(J/\psi \) 0-20\% cent. (PRL98, 232301)
- \(\pi^0 \) (PRL101, 232301)
- \(\eta \) (PRC82, 011902)
- \(\phi \) (PRC83, 024090)
- \(K^0 \) (PRC84, 044905)
- \(\rho \) (PRC83, 064903)

PHENIX d+Au, \(\sqrt{s_{NN}} = 200\text{ GeV} \)
- preliminary

Outlook
\[g_{\sigma_{\text{dis}}} (\eta, \phi) \equiv \sum_{i \in \text{fragment}} (p_T)_i^2 \exp \left(\frac{- (\Delta \eta^2 + \Delta \phi^2)}{2 \sigma_{\text{dis}}^2} \right) \]
\(p_{\text{out}} \left(= \langle k_T \rangle \right) \equiv (p_T)_{\text{low}} \cdot \sin \Delta \phi \)}
PHENIX
Jet Results
(19/19)
D.V. Perepelitsa

Introduction
Jets in PHENIX
Gaussian Filter
Analysis Techniques
p+p
Cu+Cu
d+Au
nPDF effects
Outlook

Backup Plots IV