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Jet reconstruction in heavy ion collisions

STAR preliminary
Very challenging task due to large underlying event

Jets are easy to identify but difficult to measure 
accurately due to large local background fluctuations 

Origin of fluctuations: combinatoric “jets”  

● random recombination of hadrons from soft 
background and multiple overlapping true jets 

● Experimental noise, no underlying physical 
distribution



3

Jet reconstruction in heavy ion collisions

STAR preliminary
Very challenging task due to large underlying event

Jets are easy to identify but difficult to measure 
accurately due to large local background fluctuations 

Origin of fluctuations: combinatoric “jets”  

● random recombination of hadrons from soft 
background and multiple overlapping true jets 

● Experimental noise, no underlying physical 
distribution

Experimental approaches thus far:

I. Reduce background fluctuations by suppressing low p
T 

contribution

Explicitly: cut on hadron p
T
 or calorimeter cell energy

Implicitly: high B-field, hadronic calorimetry
→ Jet quenching: possibly biased jet population

II. Restrict analysis to very high p
T
 jets; MC assessment of remaining background systematics

→ Limited applicability (high p
T
 only); dependence on fragmentation model
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HI Jet Reconstruction: a re-assessment
 Even in principle: 

● Cannot discriminate most hadrons as “jet” or “background” on event-by-event basis

● Cannot know local background density on jet-by-jet basis

Jet quenching has meaning, and can be measured, only on an ensemble-averaged basis
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● Cannot discriminate most hadrons as “jet” or “background” on event-by-event basis
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Jet quenching has meaning, and can be measured, only on an ensemble-averaged basis

Therefore, the crucial experimental limitation: 

● is not the large background relative to signal

● is the precision with which we can know the background fluctuations and correct for their 
effects on an ensemble-averaged basis

Well-defined observables: inclusive cross section, semi-inclusive coincidence rates,...
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HI Jet Reconstruction: a re-assessment
 Even in principle: 

● Cannot discriminate most hadrons as “jet” or “background” on event-by-event basis

● Cannot know local background density on jet-by-jet basis

Jet quenching has meaning, and can be measured, only on an ensemble-averaged basis

We seek new HI Jet analysis methods that are systematically well-controlled over a very broad 
energy range, at both RHIC and LHC

● Fully data-driven: no modeling of backgrounds 

● To measure jet quenching: fragmentation biases must be minimal, and transparent

→ To do this: utilize STAR and ALICE capabilities to measure individually almost all jet 
constituents over a wide p

T
 range

Therefore, the crucial experimental limitation: 

● is not the large background relative to signal

● is the precision with which we can know the background fluctuations and correct for their 
effects on an ensemble-averaged basis

Well-defined observables: inclusive cross section, semi-inclusive coincidence rates,...
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HI jet reconstruction: FastJet
Jet defined operationally: output of reconstruction 
algorithm (not necessarily interpretable 
perturbatively)

FastJet: collect all jets in acceptance i=1,...N

Event-wise estimate of background density:

Spectrum corrected event-wise for 
median background density:

G de Barros
PANIC11

p
T

<corr>(GeV/c)

  is median: ~half the jet population has 
p

T

<corr> < 0

● contains crucial information about 
background
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Toy Model Event Generator
  

Develop Toy Model Event Generator that

● is simple (and therefore transparent to interpret)

● captures the essential features and complexity of jet reconstruction in the HI background

● approximates experimental conditions at RHIC and LHC

→ apply model to explore algorithms 
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Toy Model Event Generator
  

• Generic “particles”: primary only, no decays, no detector effects
• Generic acceptance (both RHIC and LHC): |η|<1.0, full azimuth

• Soft component: Boltzmann distribution
• RHIC: <p

T
>=500 MeV

• LHC: <p
T
>=700 MeV

• Hard jet component:
• Distribution: T

AA
*dσ

jet
/dp

T
 (from p+p measurement or PYTHIA)

• Various fragmentation models (to separate unfolding and fragmentation biases):
1. None: jets are modeled as single high p

T
 particles

2. PYTHIA (vacuum) fragmentation, etc.

●     “Central” collisions: total multiplicity (charged+neutral) in acceptance
– RHIC, Au+Au 0-5%: Mtot=2000
– LHC, Pb+Pb, 0-5%: Mtot=4800

• throw millions of such events and analyze like data, with anti-k
T
, R=0.4

Develop Toy Model Event Generator that

● is simple (and therefore transparent to interpret)

● captures the essential features and complexity of jet reconstruction in the HI background

● approximates experimental conditions at RHIC and LHC

→ apply model to explore algorithms 



10

Toy model: inclusive jet spectrum

Dramatic broadening due to HI 
event background

RHIC, central Au+Au
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Toy model: inclusive jet spectrum

Dramatic broadening due to HI 
event background

RHIC, central Au+Au



12

Toy model: inclusive jet spectrum

Dramatic broadening due to HI 
event background

Measure ensemble-averaged 
distribution of  fluctuations via 
embedding known probes into 
real events

G de Barros (STAR)
arXiv:1109.4386

RHIC, central Au+Au
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Toy model: inclusive jet spectrum

Dramatic broadening due to HI 
event background

Measure ensemble-averaged 
distribution of  fluctuations via 
embedding known probes into 
real events

G de Barros (STAR)
arXiv:1109.4386

RHIC, central Au+Au

Crucial feature for unbiased measurement:         
distribution is independent of fragmentation pattern 
of embedded jet (G de Barros (STAR) arXiv:1109.4386)

Correction for background fluctuations via 
“unfolding”

Response matrix:         distribution
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Comparison of Toy Model vs Data

STAR Preliminary Toy Model
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Comparison of Toy Model vs Data

Qualitatively similar, differing in detail

● e.g. Toy Model missing flow effects, 
will account for most of the difference

Current implementation sufficient for generic 
exploration of problem

● Flow complicates interpretation, leave 
out for now

STAR Preliminary Toy Model
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Unfolding and Fragmentation Biases
 

Unfolding: it is essential to limit sensitivity to statistical noise (via regularization)
● Regularization imposes bias (smoothness) in exchange for reduced variance

● Various techniques: we use Iterative Bayesian 
➔ regularization via number of iterations
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Unfolding and Fragmentation Biases
 

Heavy ion jet reconstruction: two essential biases in the problem
● Fragmentation bias
● Unfolding bias (~correction for background fluctuations)

These play against each other:
● Try to lower unfolding bias: suppress background fluctuations via momentum cut 

on jet constituents  

● But this induces fragmentation bias

Jet quenching measurements: essential to minimize fragmentation bias

Unfolding: it is essential to limit sensitivity to statistical noise (via regularization)
● Regularization imposes bias (smoothness) in exchange for reduced variance

● Various techniques: we use Iterative Bayesian 
➔ regularization via number of iterations
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Unfolding and Fragmentation Biases
 

Heavy ion jet reconstruction: two essential biases in the problem
● Fragmentation bias
● Unfolding bias (~correction for background fluctuations)

These play against each other:
● Try to lower unfolding bias: suppress background fluctuations via momentum cut 

on jet constituents  

● But this induces fragmentation bias

Jet quenching measurements: essential to minimize fragmentation bias

Toy Model study: isolate Unfolding Bias effects by choice of Single Particle 
fragmentation 

● Then assess fragmentation bias by more physical choice of jet fragmentation

Unfolding: it is essential to limit sensitivity to statistical noise (via regularization)
● Regularization imposes bias (smoothness) in exchange for reduced variance

● Various techniques: we use Iterative Bayesian 
➔ regularization via number of iterations
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Unfolding of inclusive spectrum

RHIC
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RHIC

Unfolding of inclusive spectrum

Unfolding does not converge to Truth → highly biased (and wrong) solution

LHC
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LHC

RHIC

Unfolding of inclusive spectrum

What went wrong? Answer: overwhelming population of combinatoric (noise) “jets”
no underlying physical distribution, problem not well-posed

Solution: eliminate combinatoric jet population before unfolding
what's left? hard jet population with p

T
 smeared by background fluctuations:

→ well-posed unfolding problem

Unfolding does not converge to Truth → highly biased (and wrong) solution
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Unfolding of inclusive spectrum: suppression of 
combinatoric jet population 

The only available tool for inclusives: impose a fragmentation bias

Reasonable choice: 

● require accepted jet candidates to have at least one hadron constituent 
with p

T
>p

T

threshold (“p
T

leading” cut)

Bias is not zero, but is transparent and may be relatively mild (depends on p
T
)

● Jet candidates can still have much of their radiation carried by very soft 
hadrons
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Inclusive spectrum with  p
T

leading bias: LHC

P
T

threshold=4GeV
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p
T

threshold=7GeV

Inclusive spectrum with  p
T

leading bias: LHC

P
T

threshold=4GeV
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p
T

threshold=7GeV

p
T

threshold=10GeV

Inclusive spectrum with  p
T

leading bias: LHC

P
T

threshold=4GeV
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Inclusive spectrum with p
T

leading bias: RHIC

Similar result at RHIC (convergence for pT
threshold  ~ 4 GeV)
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Inclusive spectrum with p
T

leading bias: RHIC

Generic observation: transition to correct unfolding solution corresponds to condition: 

particle density at pT
threshold    <<   1/jet area

Rephrase: effective suppression of combinatoric jet population requires fragmentation bias with 
leading hadron p

T
 that is “rare” on the scale of jet area

Similar result at RHIC (convergence for pT
threshold  ~ 4 GeV)
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Inclusive spectrum with p
T

leading bias: RHIC

Generic observation: transition to correct unfolding solution corresponds to condition: 

particle density at pT
threshold    <<   1/jet area

Rephrase: effective suppression of combinatoric jet population requires fragmentation bias with 
leading hadron p

T
 that is “rare” on the scale of jet area

Similar result at RHIC (convergence for pT
threshold  ~ 4 GeV)

Caution: current calculation utilizes Single Particle fragmentation to isolate unfolding effects

● Spectrum of “particles” is much harder than phyiscal hadron spectrum

● Generically: expect transition in data at lower p
T
 (PYTHIA-based calculation in 

progress; quenching models? Ultimately, data will tell us..)
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How to beat the fragmentation bias? 
hadron+jet coincidences

 Coincidence of jet recoiling from hadron trigger

● p
T

trigger large enough that trigger is likely leading particle of jet

● Trigger imposes surface bias → recoil jet traverses maximum path 
length in medium

● Observable: semi-inclusive recoil jet yield normalized per trigger 
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How to beat the fragmentation bias? 
hadron+jet coincidences

 Coincidence of jet recoiling from hadron trigger

● p
T

trigger large enough that trigger is likely leading particle of jet

● Trigger imposes surface bias → recoil jet traverses maximum path 
length in medium

● Observable: semi-inclusive recoil jet yield normalized per trigger 

Heavy ions: hadron trigger isolates a single 
hard process, rest of event is background

Distribution same as in p+p except for:

● Jet quenching

● Smearing due to background fluctuations 
(combinatoric jets)

PYTHIA h+jet
p+p 2.76 TeV
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hadron+jet in heavy ion collisions: new 
observable

By definition: combinatoric jet distribution is uncorrelated with pT
trigger

Opportunity: compare recoil jet distributions for two different (exclusive) 

intervals of p
T

trigger

● Combinatoric jet part should be identical 

● Hard jet part should depend on pT
trigger
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`

hadron+jet in heavy ion collisions: new 
observable

By definition: combinatoric jet distribution is uncorrelated with pT
trigger

Opportunity: compare recoil jet distributions for two different (exclusive) 

intervals of p
T

trigger

● Combinatoric jet part should be identical 

● Hard jet part should depend on pT
trigger New observable: difference of the two 

distributions

● Combinatorial jet population subtracted 
in fully data-driven way

● What's left: hard jet distribution 
smeared by background fluctuations → 
unfold (!)

What is it? 

● The evolution of hard jet distribution as 

pT
trigger changes

● Unusual, but perfectly legitimate and 
perturbatively calculable 
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Differential h+jet coincidence at RHIC: unfolding

Unfolding converges stably to Truth above 
p

T

trigger threshold

Correct result: subtraction is designed to 
suppress jet yield below threshold

●  physics bias (which is fine, and 
interesting) 

Unfolding bias: minimal 

● Unfolded/Truth~1 to better than 10% 

Fragmentation bias: none, by design
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Differential h+jet coincidence at LHC

Similar picture to RHIC: unfolding 
converges stably to Truth above 

pT
trigger  threshold

Residual unfolding bias ~10% (work in 
progress)

Fragmentation bias: none, by design
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Summary and Outlook

We have reassessed the problem of jet reconstruction in heavy ion collisions

● Key issue: precision with which background fluctuations can be measured 
and corrected

● Problem recast as minimization of both unfolding and fragmentation biases

New analysis methods proposed to minimize these biases in a transparent way

● Both quasi-inclusive and coincidence observables

● Optimally implemented via STAR/ALICE approach to jet measurements

● Methods were tested on Model studies representative of data

● Methods work well over full jet kinematic range at RHIC and LHC

Next step: apply to data
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Backup Slides
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Bayesian Unfolding

P(E
j
|C

i
,I): probability of effect j (E

j
) has 

been caused due cause i (C
i
)

P(C
i
|E

j
,I): probability of cause i (C

i
) 

comes from effect j (E
j
)

By the knowledge of P(E
j
|C

i
) and a choice of 

prior distribution, one obtains P(C
i
|E

j
):

The unfolded spectrum n(C
i
) is obtained from 

the measured spectrum n(E
j
) by:

n(C
i
) can be used as a new input for the prior and 

unfolding can be done again (iterations) → the number of 
iterations is the regularization parameter
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Toy Model – RHIC
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Toy Model – LHC
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Coincidence Analysis: h+jet (I)

 Trigger on a high pT particle and report recoil jet
 Utilize exclusive trigger classes
 Allows differential analysis
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Toy Model Validation

Comparison: delta pT X Jet area:

Same behavior for toy model events as real data

Note transition at pTemb = 5GeV/c.

STAR preliminary STAR preliminary STAR preliminary

Toy ModelToy ModelToy Model
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G de Barros (STAR)
arXiv:1109.4386
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