TWO PARTICLE CORRELATION MEASUREMENTS AT PHENIX

Takahito Todoroki For the PHENIX Collaboration University of Tsukuba & RIKEN Nishina Center

Hard Probes 2012 at Cagliari, Italy

筑波大学 University of Tsukuba

Contents

- Higher harmonic event plane and flow(v_n)
- Correlations with v_n subtractions
- Correlations relative to event plane
 - -At high and intermediate p_{T}
- Summary

Motivations

 Dissect possible interplay of hardscattered partons & hot dense medium

 To have definitive answer what remains in correlations after v_n subtractions

 To test path length dependence of parton energy loss via correlations relative to event plane

Initial state of collisions

Smooth picture

Fluctuating picture

- Initial collision geometry
 - Smooth to Fluctuating picture
- Azimuthal particle distribution

$$-\mathbf{v}_{n(\text{even})}\{\Phi_{2}\} \text{ only } \rightarrow \mathbf{v}_{n(\text{even})}\{\Phi_{n}\} + \mathbf{v}_{n(\text{odd})}\{\Phi_{n}\}$$
$$dN/d\phi = 1 + \sum 2v_{n} \cos n(\phi - \Phi_{n})$$

Charged Hadron v_n at PHENIX

PRL.107.252301

- v_2 evolution as centrality increment, no evolution in v_3
- $v_4{\Phi_4} \sim 2 \times v_4{\Phi_2}$

Identified Particle v_n

- Mass dependence at low p_T : Hydrodynamics
- Baryon/Meson diff. at mid p_T : Quark Coalescence

v_n contributions in correlations $Jet(\Delta\phi) = CF(\Delta\phi) - b_0Flow(\Delta\phi)$ Au+Au central Phys. Rev. C 80, 064912 (2009) 3<n.trig<4 GeV/c Phys. Rev. C 78, 014901 (2008) 2< p_asso < p_trig GeV/C ^Φ∇ **p**/_{qe} **Np**(_e**N**/_l) **o:p+p** 3-4 ⊗ 2-3 GeV/c •: Au+Au 0.04 (U∇p 4∇p)/N₂p v₂ subtracted Ridge NR 0.02 **n=3** 1.5 0.5 -0.5 ON Shoulder -1.5 ⁻¹

- Contributions from $v_n : \sim b_0 2 v_n^{trig} v_n^{asso} \cos n \Delta \phi$
- Ridge & Shoulder positions : Agree with v₃ peaks
- v_n subtractions needed to get real jet correlations

28 May 2012

Correlations with Δη gap

Correlations without $\Delta \eta$ gap

 Away side shoulders are almost gone in most-central collisions 0-20%

Correlations up to centrality 50%

- Away side shoulders
 - Canceled in most-central collisions : 0-10%
 - Remain in mid-central collisions : 20-50%
- To Do : Include v1 term to v_n modulation for definitive answer

Correlations relative to event plane

- Control parton path length
 - -By selecting trigger relative to forward event plane
 - -Reduce autocorrelations of jet itself

Intermediate p_T range

- Constant suppression of back-to-back jet
- Two competitive effects seen

Summary

- Higher harmonic flow v_n has been measured
- By v_n modulation to correlations,
 - Shoulders almost gone in most-central collisions
 - Shoulders remain in mid-central collisions
- Correlations relative to event plane
 - Monotonic away side suppression at high $\ensuremath{p_{T}}$
 - Constant suppression of di-jet & Two competitive effects at intermediate p_T
- Fully v_n modulated analyses are in progress

Backup Slides

PRL.107.252301

FIG. 1 (color online). Raw correlation strengths $\langle \cos(j[\Phi_n^A - \Phi_m^B]) \rangle$ and $\langle \cos(j[\Phi_n^C - \Phi_m^D]) \rangle$ of the event planes for various detector combinations as a function of the collision centrality, binned in percentages of the total cross section, where 0% corresponds to impact parameter = 0. Panels (a) and (b) show the two subevent correlations for m = n; (c) and (d) show the two subevent correlations for $m \neq n$. The detectors in which the event plane is measured are: A: RXN North, B: BBC South, C: MPC North, and D: MPC South. Data in (b) and (d) have been scaled by factors of 10 and 20, respectively.

 Mid rapidity particle anisotropy relative to forward event planes

Degeneracy among models disentangled by v₃

PRL.107.252301 (ppg132)
B. Alver et. al., PRC82, 034913(2010).
B. Schenke et. al., PRL106, 042301(2011).
H. Petersen et. al., PRC82, 041901(2010).

Compare with the Event Plane method

Consistent between the 2PC and full FCal EP method (Similar for $FCal_{P(N)}$). QM'11 J. Jia ATLAS Flow Plenary

20

Scaling property of v₂

Scaling property of v_n

• $v_n(KE_T/n_q)/n_q^{n/2}$: need correction power

Fourier decomposition of flow subtracted correlations

Correlations relative to Φ_3

