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Stages of a collision
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Stages of a collision

This talk : evolution up to times ∼ 1 fm/c

i. Partonic content of high energy nuclei
ii. Gluon production in the collision

iii. Evolution shortly after the collision, Thermalization
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Color Glass Condensate = effective theory of small x gluons
[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidov,
Weigert (1997), Iancu, Leonidov, McLerran (2001)]

• The fast partons (k+ > Λ+) are frozen by time dilation
B described as static color sources on the light-cone :

Jµ = δµ+ρ(x−,~x⊥) (0 < x− < 1/Λ+)

• The color sources ρ are random, and described by a
probability distribution WΛ+ [ρ]

• Slow partons (k+ < Λ+) may evolve during the collision
B treated as standard gauge fields
B eikonal coupling to the current Jµ : JµAµ

S = −
1

4

∫
FµνF

µν︸ ︷︷ ︸
SYM

+

∫
JµAµ︸ ︷︷ ︸

fast partons
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Factorization
and Universality
[FG, Lappi, Venugopalan (2008)]
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Leading Order

• All observables can be expressed in terms of classical
solutions of Yang-Mills equations :

[Dµ,F
µν] = Jν

• Boundary conditions for inclusive observables : retarded,
with A → 0 at x0 = −∞

Inclusive spectra at LO

dN1

d3~p

∣∣∣∣
LO

∼

∫
d4xd4y eip·(x−y) �x�y A(x)A(y)

dNn

d3~p1 · · ·d3~pn

∣∣∣∣
LO

=
dN1

d3~p1

∣∣∣∣
LO

· · · dN1
d3~pn

∣∣∣∣
LO



François Gelis

Factorization

Thermalization

7

Next to Leading Order

Master relation between LO and NLO

ONLO =

[
1

2

∫
u,v

∫
k

[
akT

]
u

[
a∗kT

]
v
+

∫
u

[
αT

]
u

]
OLO

Tu ∼
δ

δA(0,u)
, ak,α known analytically

• Valid for all inclusive observables,
e.g. the energy-momentum tensor

• In the CGC, upper cutoff on the loop momentum : k± < Λ,
to avoid double counting with the sources J1,2
B large logarithms of the cutoff
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Initial state logarithms

Central result

1

2

∫
u,v

∫
k

[
akT

]
u

[
a∗kT

]
v
+

∫
u

[
αT

]
u
=

= log
(
Λ+
)
H1 + log

(
Λ−
)
H2 + terms w/o logs

H1,2 = JIMWLK Hamiltonians of the two nuclei

• No mixing between the logs of the two nuclei

• Since the LO↔NLO relationship is the same for all
inclusive observables, these logs have a universal
structure
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Factorization of the logarithms

• The JIMWLK Hamiltonian H is self-adjoint :∫
[Dρ]W

(
HO

)
=

∫
[Dρ]

(
HW

)
O

Inclusive observables at Leading Log accuracy

〈O〉
Leading Log

=

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

]
OLO [ρ1, ρ2]︸ ︷︷ ︸

fixed ρ1,2

• Logs absorbed into the scale evolution of W1,2

Λ
∂W

∂Λ
= HW (JIMWLK equation)
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Thermalization
and Isotropization

[Dusling, Epelbaum, FG, Venugopalan (2010-12)]
[Dusling, FG, Venugopalan (2011)]

[Epelbaum, FG (2011)]



Q
S

-1

François Gelis

Factorization

Thermalization

11

Energy momentum tensor at LO
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Energy momentum tensor at LO

Tµν for longitudinal ~E and ~B

Tµν
LO

(τ = 0+) = diag (ε, ε, ε,−ε)

B far from ideal hydrodynamics
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Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),
Bodeker, Rummukainen (2007),...]
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Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),
Bodeker, Rummukainen (2007),...]

• Some of the field fluctuations ak diverge like exp
√
µτ

when τ→ +∞
• Some components of Tµν have secular divergences when

evaluated at fixed loop order

• When ak ∼ A ∼ g−1, the power counting breaks down and
additional contributions must be resummed :

g e
√
µτ ∼ 1 at τmax ∼ µ−1 log2(g−1)
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Improved power counting

Loop ∼ g2 , Tu ∼ e
√
µτ

u

T
µν
(x)

vΓ
2
(u,v)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops :
g(ge

√
µτ)3 B subleading

Leading terms at τmax

• All disjoint loops to all orders
B exponentiation of the 1-loop result
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Improved power counting

Loop ∼ g2 , Tu ∼ e
√
µτ

T
µν
(x)

Γ3(u,v,w)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops :
g(ge

√
µτ)3 B subleading

Leading terms at τmax

• All disjoint loops to all orders
B exponentiation of the 1-loop result
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v∈Σ

∫
k

[akT]u[a
∗
kT]v︸ ︷︷ ︸

G(u,v)

+

∫
u∈Σ

[αT]u

]
Tµν

LO
[Ainit]

• The evolution remains classical, but we must average over
a Gaussian ensemble of initial conditions

• The shift α can be absorbed into a redefinition of Ainit

• The 2-point correlation G(u, v) of the fluctuations is known
analytically
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Resummation of the leading secular terms

Tµν
resummed

= exp

[
1

2

∫
u,v∈Σ

∫
k

[akT]u[a
∗
kT]v︸ ︷︷ ︸

G(u,v)

+

∫
u∈Σ

[αT]u

]
Tµν

LO
[Ainit]

=

∫
[Dχ] exp

[
−
1

2

∫
u,v∈Σ

χ(u)G−1(u, v)χ(v)

]
Tµν

LO
[Ainit + χ+ α]

• The evolution remains classical, but we must average over
a Gaussian ensemble of initial conditions

• The shift α can be absorbed into a redefinition of Ainit

• The 2-point correlation G(u, v) of the fluctuations is known
analytically
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Analogous scalar toy model

φ4 field theory coupled to a source

L =
1

2
(∂αφ)

2 −
g2

4!
φ4 + Jφ

Strong external source: J ∝ Q3

g

• In 3+1-dim, g is dimensionless, and the only scale in the
problem is Q

• This theory has unstable modes (parametric resonance)

• Two setups have been studied :

• Fixed volume system
• Longitudinally expanding system
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Pathologies in fixed order calculations

Tree

-40

-30

-20
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time

PLO εLO

• Oscillating pressure at LO : no equation of state

• Small NLO correction to the energy density (protected by
energy conservation)

• Secular divergence in the NLO correction to the pressure
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Pathologies in fixed order calculations

Tree + 1-loop
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• Oscillating pressure at LO : no equation of state
• Small NLO correction to the energy density (protected by

energy conservation)
• Secular divergence in the NLO correction to the pressure
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Resummed energy momentum tensor
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ε

• No secular divergence in the resummed pressure

• The pressure relaxes to the equilibrium equation of state
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Time evolution of the occupation number
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Bose-Einstein with µ=0.54,T=1.31

T/(ωk-µ)-1/2 with µ=0.54,T=1.31

const / k
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10
4

• Resonant peak at early times

• Turbulent Kolmogorov spectrum in the intermediate k-range?

• Late times : classical equilibrium with a chemical potential

• µ ≈ m + excess at k = 0 : Bose-Einstein condensation?
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Bose-Einstein condensation
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• Start with the same energy density, but an empty zero mode

• Very quickly, the zero mode becomes highly occupied

• Same distribution as before at late times
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Evolution of the condensate
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4
/4!

g
2
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8

• Formation time almost independent of the coupling
• Condensate lifetime much longer than its formation time
• Smaller amplitude and faster decay at large coupling
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Longitudinal expansion
• The EoM is singular when τ→ 0 : one must start at τ0 6= 0

∂2τφ+
1

τ
∂τφ−

1

τ2
∂2ηφ−∇2

⊥φ+
g2

6
φ3 = 0

• The spectrum of fluctuations of the initial field also
depends on τ0, precisely in such a way that the end result
is independent of τ0

×10
-1

×10
0

×10
1

×10
2

×10
3

×10
4

×10
-2 ×10

-1 ×10
0 ×10

1

 τ

PT(τ0=0.01)

ε(τ0=0.01)

PT(τ0=0.1)

ε(τ0=0.1)
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Longitudinal expansion : occupation number

τ = 0.1     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 10     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 50     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 100     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 150     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 200     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : occupation number

τ = 300     [40 × 40 × 320]
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• Note : ν is the Fourier conjugate of the rapidity η

• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a
thermalized system)
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Longitudinal expansion : equation of state

10
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10
-1

10
0

10
1

 10  100

 τ

τ
-4/3

τ
-1

2P
T
 + P

L

ε

• After a short time, one has 2P
T
+ P

L
≈ ε

• Change of behavior of the energy density: τ−1 → τ−4/3.
Since one has ∂τε+ (ε+ P

L
)/τ = 0, this suggests that P

L

gets close to ε/3
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Longitudinal expansion : isotropization

×10
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 τ

P
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P
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2P
T
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• At early times, P
L

drops much faster than P
T

(redshifting of the
longitudinal momenta due to the expansion)

• Drastic change of behavior when the expansion rate becomes
smaller than the growth rate of the unstability

• Eventually, isotropic pressure tensor : P
L
≈ P

T
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Summary
and Outlook
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Summary

• Factorization of high energy logarithms in AA collisions
• universal distributions, also applicable in pA or DIS
• controls the rapidity dependence of correlations
• limited to inclusive observables

• Resummation of secular terms in the final state evolution
• stabilizes the NLO calculation
• leads to the equilibrium equation of state
• isotropization even with longitudinal expansion
• full thermalization on longer time-scales
• Bose-Einstein condensation if overoccupied initial state

(so far, all numerical studies done for a toy scalar model)

What’s next? QCD

• approach straightforwardly generalizable to QCD

• seamless integration with the CGC description of AA collisions

• gauge invariant

• computationally expensive ( ∼ [scalar case] ×3(N2c − 1))
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Extra bits



François Gelis

Factorization

Thermalization

28

Lattice spacing dependence

0.0
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1/3

0.4

0.6

 0  50  100  150  200  250  300

τ

P
L
 / ε :     N = 80

P
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 / ε :     N = 80
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• When νmax ∼ τ2/3 & 2N, the longitudinal modes are artificially
cut-off, and the longitudinal pressure decreases

• If N increases, the field acquires a mass m2 ∼ g2 log(N)
Taking the limit N→ ∞ requires a proper renormalization of the
bare parameters of the theory
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Dense-dilute collisions
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Dense-dilute collisions

Expected complications

• More diagrams to consider even at Leading Order
• More terms in the evolution Hamiltonian if ρ ∼ g:

g2ρ2
(
∂

∂ρ

)2
∼ g4ρ2

(
∂

∂ρ

)4
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Exclusive processes
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Exclusive processes

Example : differential probability to produce 1 particle at LO

dP1

d3~p

∣∣∣∣
LO

= F[0]×
∫
d4xd4y eip·(x−y)�x�yA+(x)A−(y)

∣∣∣
z=0

• The vacuum-vacuum graphs do not cancel in exclusive
quantities : F[0] 6= 1 (in fact, F[0] = exp(−c/g2)� 1)

• A+ and A− are classical solutions of the Yang-Mills
equations, but with non-retarded boundary conditions
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Thermalization in Yang-Mills theory

• Recent analytical work : Kurkela, Moore (2011)

• Going from scalars to gauge fields :

• More fields per site (3 Lorentz components × 8 colors)

• More complicated spectrum of initial conditions
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BEC and dilepton production
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BEC and dilepton production

Two topologies for virtual photons at LO

Connected ω ∼Minv ∼ Qs k⊥ ∼ Qs

Disconnected ω ∼Minv ∼ Qs k⊥ � Qs

B excess of dileptons with k⊥ �Minv
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