Heavy-quarkonium suppression in p A collisions from induced gluon radiation

François Arleo

LAPTH, Annecy

Hard Probes 2012

Cagliari, Italy – May 2012

Outline

- Motivations
 - J/ψ suppression data in p A collisions
- Revisiting energy loss
 - New scaling properties from medium-induced coherent radiation
- Phenomenology
 - Model for J/ψ and Υ suppression in p A collisions
 - Comparison with data and LHC predictions

References

- FA, S. Peigné, T. Sami, 1006.0818
- FA, S. Peigné, 1204.4609 + in preparation

J/ψ suppression in p A collisions at forward rapidities

E866
$$\sqrt{s} = 38.7 \text{ GeV}$$

PHENIX $\sqrt{s} = 200 \text{ GeV}$

- Strong J/ ψ suppression reported at large $x_{\rm F}$ and y
- Weaker suppression in the Drell-Yan process
- Observed at various \sqrt{s}

J/ψ suppression in p A collisions

Many explanations suggested...yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - requires $\Delta E \propto E \dots$ supposedly ruled out

J/ψ suppression in p A collisions

Many explanations suggested...yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - requires $\Delta E \propto E \dots$ supposedly ruled out

This talk: revisiting energy loss processes

Gavin-Milana model

Simple model assuming (mean) energy loss scaling like parton energy

[Gavin Milana 1992]

 $\Delta E \propto E L M^{-2}$

for both Drell-Yan and J/ ψ (though larger due to final-state energy loss)

Caveats

- Ad hoc assumption regarding E, L, and M dependence of parton energy loss, no link with induced gluon radiation
- Failure to describe ↑ suppression
- \bullet $\Delta E \propto E$ claimed to be incorrect in the high energy limit due to uncertainty principle so-called Brodsky-Hoyer bound

A bound on energy loss?

Induced gluon radiation needs to resolve the medium

[Brodsky Hoyer 93]

$$t_f \sim \frac{\omega}{k_\perp^2} \lesssim L \qquad \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Apparently rules out energy loss models as a possible explanation

However

Not necessarily true in QCD

[FA Peigné Sami 10]

Revisiting energy loss scaling properties

Two cases whether gluon radiation is coherent or incoherent

(i) Incoherent radiation in the initial/final state

Radiation of gluons with large formation times cancels out in the induced gluon spectrum, leading to $t_f \sim L$

$$\Delta E \propto \hat{q}L^2$$

- Hadron production in nuclear DIS and Drell-Yan in p A collisions
- Jets and hadrons produced in hadronic collisions at large angle

Revisiting energy loss scaling properties

Two cases whether gluon radiation is coherent or incoherent

(ii) Coherent radiation (interference) in the initial/final state Induced gluon spectrum dominated by large formation times

$$\Delta E \propto \frac{\sqrt{\hat{q}L}}{M} E$$

- Production of light and open heavy-flavour hadrons at forward rapidities in the medium rest frame (nuclear matter or QGP)
- ullet Production of heavy-quarkonium if color neutralisation occurs on long time-scales $t_{
 m octet}\gg t_{
 m hard}$

Medium-induced gluon spectrum

Gluon spectrum $dI/d\omega\sim$ Bethe-Heitler spectrum of massive (color) charge

$$\begin{split} \omega \frac{dI}{d\omega} \bigg|_{\text{ind}} &= \frac{N_c \alpha_s}{\pi} \left\{ \ln \left(1 + \frac{E^2 \Delta q_\perp^2}{\omega^2 M_\perp^2} \right) - \ln \left(1 + \frac{E^2 \Lambda_{\text{\tiny QCD}}^2}{\omega^2 M_\perp^2} \right) \right\} \\ \Delta E &= \int d\omega \, \omega \, \left. \frac{dI}{d\omega} \right|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\Delta q_\perp^2} - \Lambda_{\text{\tiny QCD}}}{M_\perp} \, E \end{split}$$

- $\Delta E \propto E$ neither initial nor final state effect nor 'parton' energy loss: arises from coherent radiation
- Physical origin: broad t_f interval : $L, t_{\mathsf{hard}} \ll t_f \ll t_{\mathsf{octet}}$ for medium-induced radiation

Model for heavy-quarkonium suppression

[FA Peigné 1204.4609]

$$\frac{d\sigma_{pA}^{\psi}}{dx_{F}}\left(x_{F},\sqrt{s}\right) = \int_{0}^{\epsilon_{\text{max}}} d\epsilon \, \mathcal{P}(\epsilon) \, \frac{d\sigma_{pp}^{\psi}}{dx_{F}} \left(x_{F} + \delta x_{F}(\epsilon)\right)$$

pp cross section fitted from experimental data

$$rac{d\sigma_{pp}^{\psi}}{dx_{\scriptscriptstyle F}} \propto (1-x')^{n(\sqrt{s})}/x' \qquad x' \equiv \sqrt{x_{\scriptscriptstyle F}^2 + 4M_{\scriptscriptstyle \perp}^2/s}$$

- Shift given by $\delta x_{\rm F}(\epsilon) \simeq \epsilon/E_{\rm beam}$
- $\mathcal{P}(\epsilon)$: quenching weight, scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$
- Length L given by $L = 3/2 r_0 A^{1/3}$

Quenching weight

• Poisson approximation assuming independent emission [BDMS 2001]

$$\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dI(\omega_{i})}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}\right)$$

• However, radiating ω_i takes time $t_f(\omega_i) \sim \omega_i/\Delta q_\perp^2 \gg L$

For $\omega_i \sim \omega_j \Rightarrow$ emissions i and j are not independent

• For self-consistency, constrain $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

$$P(\epsilon) \simeq \frac{dI(\epsilon)}{d\omega} \exp\left\{-\int_{\epsilon}^{\infty} d\omega \frac{dI}{d\omega}\right\}$$

Transport coefficient

 \hat{q} related to gluon distribution in a proton

[BDMPS 1997]

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x, \hat{q}L)$$

Typical value for x

- $x = x_0 \simeq (m_{_N} L)^{-1}$ for $t_{\text{hard}} \lesssim L \Rightarrow \hat{q}(x) = \text{constant}$
- $x \simeq x_2$ for $t_{hard} > L \Rightarrow \hat{q}(x) \propto x^{-0.3}$

For simplicity we assume

$$\hat{q}(x) = \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3}$$
 $x = \min(x_0, x_2)$

 $\hat{q}_{\scriptscriptstyle 0}$ only free parameter of the model

Procedure

- **①** Fit $\hat{q}_{\scriptscriptstyle 0}$ from J/ ψ suppression E866 data in p W collisions
- ② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

Procedure

- **①** Fit \hat{q}_0 from J/ ψ suppression E866 data in p W collisions
- ② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

ullet Fe/Be ratio well described, supporting the L dependence of the model

Procedure

- **①** Fit \hat{q}_0 from J/ ψ suppression E866 data in p W collisions
- ② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

ullet Fe/Be ratio well described, supporting the L dependence of the model

Let's investigate J/ψ suppression at other energies

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

Nuclear absorption if hadron formation occurs inside the medium

$$t_{\mathsf{form}} = \gamma \ \tau_{\mathsf{form}} \lesssim L$$

- Low \sqrt{s} and/or negative $x_{\rm F}$
- Indicated later assuming $au_{\mathrm{form}} = 0.3~\mathrm{fm}$

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

ullet nPDF/saturation effects when $Q_s^2 \sim m_c^2$

$$R_{_{\mathrm{pA}}} = R_{_{\mathrm{pA}}}^{\mathrm{E.loss}}(\hat{q}) imes imes \mathcal{S}_{\mathrm{A}}^{\mathrm{sat}}(\mathit{Q_{s}})/\mathcal{S}_{\mathrm{p}}^{\mathrm{sat}}(\mathit{Q_{s}})$$

 $\mathcal{S}_{
m A}^{
m sat}(\mathit{Q}_{\it s})$ parametrized as

[Fujii Gelis Venugopalan 2006]

$$\mathcal{S}_{
m A}^{
m sat}(Q_s) = \left(rac{2.65}{2.65 + Q_s^2 \; [{
m GeV}^2]}
ight)^{0.417}$$

- No additional parameter: $Q_s^2(x,L) = \hat{q}(x)L$
- Mueller 1999
- Reduces fitted transport coefficient: $\hat{q}_0 = 0.05 \text{ GeV}^2/\text{fm}$
- $Q_s^2(x=10^{-2})=0.08-0.15~{\rm GeV^2}$ consistent with fits to DIS data

[Albacete et al AAMQS 2011]

SPS predictions

- Agreement when $x_{\rm F} > x_{\rm F}^{\rm min}$
- ullet Natural explanation from the different suppression in p A vs π A
- ullet Room for J $/\psi$ absorption, though weaker than previously thought

RHIC predictions

- Energy loss model fails in the most backward bins
- Saturation effects improve the agreement
- Smaller experimental uncertainties would help

LHC predictions

- ullet Moderate effects ($\sim 10-15\%$) around mid-rapidity
- Large effects above $y \gtrsim 2-3$
- ullet Saturation might be the dominant effect at the LHC around $y\simeq 0$
- Slightly smaller suppression expected in the Υ channel

Summary

- ullet Energy loss $\Delta E \propto E$ due to coherent radiation
 - Neither initial nor final state effect
 - ullet Parametric dependence of $dI/d\omega$ and ΔE predicted
- Heavy-quarkonium suppression predicted from SPS to LHC
 - Good agreement with all existing data
 - Natural explanation for the large $x_{\!\scriptscriptstyle F}$ J/ ψ suppression
 - Model supplemented consistently by saturation effects
 - ullet Supports the assumption of long-lived color octet QQ pair
 - \bullet More precise ${\mathrm J}/\psi$ and Υ data (and larger y) would help
- Similar phenomena expected for light / heavy hadrons
 - Work in progress