Heavy-quarkonium suppression in p A collisions from induced gluon radiation

François Arleo

LAPTH, Annecy

Hard Probes 2012

Cagliari, Italy – May 2012
Motivations
- \(J/\psi \) suppression data in p A collisions

Revisiting energy loss
- New scaling properties from medium-induced coherent radiation

Phenomenology
- Model for \(J/\psi \) and \(\Upsilon \) suppression in p A collisions
- Comparison with data and LHC predictions

References
- FA, S. Peigné, T. Sami, 1006.0818
- FA, S. Peigné, 1204.4609 + in preparation
Strong J/ψ suppression reported at large x_F and y
Weaker suppression in the Drell-Yan process
Observed at various \sqrt{s}
J/ψ suppression in p A collisions

Many explanations suggested... yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - requires $\Delta E \propto E$... supposedly ruled out
Many explanations suggested... yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - requires $\Delta E \propto E$... supposedly ruled out

This talk: revisiting energy loss processes
Gavin–Milana model

Simple model assuming (mean) energy loss scaling like parton energy

$$\Delta E \propto E \ L \ M^{-2}$$

for both Drell-Yan and J/ψ (though larger due to final-state energy loss)

Caveats

- Ad hoc assumption regarding E, L, and M dependence of parton energy loss, no link with induced gluon radiation
- Failure to describe Υ suppression
- $\Delta E \propto E$ claimed to be incorrect in the high energy limit due to uncertainty principle — so-called Brodsky-Hoyer bound
Induced gluon radiation needs to resolve the medium \[t_f \sim \frac{\omega}{k_\perp^2} \lesssim L \quad \omega \lesssim k_\perp^2 L \sim \hat{q} L^2 \]

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Apparently rules out energy loss models as a possible explanation

However
- Not necessarily true in QCD

[FA Peigné Sami 10]
Two cases whether gluon radiation is coherent or incoherent

(i) Incoherent radiation in the initial/final state

Radiation of gluons with large formation times cancels out in the induced gluon spectrum, leading to $t_f \sim L$

$$\Delta E \propto \hat{q}L^2$$

- Hadron production in nuclear DIS and Drell-Yan in pA collisions
- Jets and hadrons produced in hadronic collisions at large angle
Two cases whether gluon radiation is coherent or incoherent

(ii) **Coherent** radiation (interference) in the initial/final state

Induced gluon spectrum dominated by large formation times

\[\Delta E \propto \sqrt{qL} E \]

- Production of light and open heavy-flavour hadrons at forward rapidities in the medium rest frame (nuclear matter or QGP)
- Production of heavy-quarkonium if color neutralisation occurs on long time-scales \(t_{\text{octet}} \gg t_{\text{hard}} \)
Medium-induced gluon spectrum

Gluon spectrum $dl/d\omega \sim$ Bethe-Heitler spectrum of massive (color) charge

$$\frac{dl}{d\omega}\bigg|_{\text{ind}} = \frac{N_c\alpha_s}{\pi} \left\{ \ln \left(1 + \frac{E^2\Delta q^2_\perp}{\omega^2 M^2_\perp} \right) - \ln \left(1 + \frac{E^2\Lambda^2_{\text{QCD}}}{\omega^2 M^2_\perp} \right) \right\}$$

$$\Delta E = \int d\omega \omega \frac{dl}{d\omega}\bigg|_{\text{ind}} = N_c\alpha_s\frac{\sqrt{\Delta q^2_\perp - \Lambda^2_{\text{QCD}}}}{M_\perp} E$$

- $\Delta E \propto E$ neither initial nor final state effect nor ‘parton’ energy loss: arises from coherent radiation
- Physical origin: broad t_f interval: $L, t_{\text{hard}} \ll t_f \ll t_{\text{octet}}$ for medium-induced radiation
Model for heavy-quarkonium suppression

\[
\frac{d\sigma_{\psi}^{pA}}{dx_F}(x_F, \sqrt{s}) = \int_{0}^{\epsilon_{\text{max}}} d\epsilon \, P(\epsilon) \frac{d\sigma_{\psi}^{pp}}{dx_F}(x_F + \delta x_F(\epsilon))
\]

- pp cross section fitted from experimental data

\[
\frac{d\sigma_{\psi}^{pp}}{dx_F} \propto (1 - x')^{n(\sqrt{s})} / x' \quad x' \equiv \sqrt{x_F^2 + 4M_{\perp}^2 / s}
\]

- Shift given by \(\delta x_F(\epsilon) \approx \epsilon / E_{\text{beam}} \)
- \(P(\epsilon) \): quenching weight, scaling function of \(\hat{\omega} = \sqrt{qL / M_{\perp}} \times E \)
- Length \(L \) given by \(L = 3/2 \, r_0 \, A^{1/3} \)
Quenching weight

- Poisson approximation assuming independent emission [BDMS 2001]

\[\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dl(\omega_i)}{d\omega} \right] \delta \left(\epsilon - \sum_{i=1}^{n} \omega_i \right) \]

- However, radiating \(\omega_i \) takes time \(t_f(\omega_i) \sim \omega_i / \Delta q_{\perp}^2 \gg L \)

 For \(\omega_i \sim \omega_j \Rightarrow \) emissions \(i \) and \(j \) are not independent

- For self-consistency, constrain \(\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n \)

\[P(\epsilon) \sim \frac{dl(\epsilon)}{d\omega} \exp \left\{ - \int_{\epsilon}^{\infty} d\omega \frac{dl}{d\omega} \right\} \]
Transport coefficient

\(\hat{q} \) related to gluon distribution in a proton

\[
\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x, \hat{q}L)
\]

Typical value for \(x \)

- \(x = x_0 \approx (m_N L)^{-1} \) for \(t_{\text{hard}} \lesssim L \) \(\Rightarrow \hat{q}(x) = \text{constant} \)
- \(x \approx x_2 \) for \(t_{\text{hard}} > L \) \(\Rightarrow \hat{q}(x) \propto x^{-0.3} \)

For simplicity we assume

\[
\hat{q}(x) = \hat{q}_0 \left(\frac{10^{-2}}{x} \right)^{0.3} \quad x = \min(x_0, x_2)
\]

\(\hat{q}_0 \) only free parameter of the model
Procedure

1. Fit \hat{q}_0 from J/ψ suppression E866 data in pW collisions
2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies
1. Fit \hat{q}_0 from J/ψ suppression E866 data in p W collisions

2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies

Fe/Be ratio well described, supporting the L dependence of the model

$\hat{q}_0 = 0.09$ GeV2/fm
Procedure

1. Fit \hat{q}_0 from J/ψ suppression E866 data in pW collisions
2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies

Fe/Be ratio well described, supporting the L dependence of the model

Let’s investigate J/ψ suppression at other energies

$\hat{q}_0 = 0.09 \text{ GeV}^2/\text{fm}$
Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

- **Nuclear absorption** if hadron formation occurs inside the medium

\[t_{\text{form}} = \gamma \tau_{\text{form}} \lesssim L \]

- Low \(\sqrt{s} \) and/or negative \(x_F \)
- Indicated later assuming \(\tau_{\text{form}} = 0.3 \) fm
Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression:

- **nPDF/saturation effects** when \(Q_s^2 \sim m_c^2 \)

\[
R_{pA} = R_{pA}^{E,\text{loss}}(\hat{q}) \times S_{A}^{\text{sat}}(Q_s)/S_{p}^{\text{sat}}(Q_s)
\]

\(S_{A}^{\text{sat}}(Q_s) \) parametrized as [Fujii, Gelis, Venugopalan 2006]

\[
S_{A}^{\text{sat}}(Q_s) = \left(\frac{2.65}{2.65 + Q_s^2 [\text{GeV}^2]} \right)^{0.417}
\]

- No additional parameter: \(Q_s^2(x, L) = \hat{q}(x)L \) [Mueller 1999]
- Reduces fitted transport coefficient: \(\hat{q}_0 = 0.05 \text{ GeV}^2/\text{fm} \)
- \(Q_s^2(x = 10^{-2}) = 0.08 - 0.15 \text{ GeV}^2 \) consistent with fits to DIS data [Albacete et al AAMQS 2011]
Agreement when $x_F > x_F^{\text{min}}$

Natural explanation from the different suppression in p A vs π A

Room for J/ψ absorption, though weaker than previously thought
RHIC predictions

Energy loss model fails in the most backward bins
Saturation effects improve the agreement
Smaller experimental uncertainties would help
LHC predictions

- Moderate effects ($\sim 10 - 15\%$) around mid-rapidity
- Large effects above $y \gtrsim 2 - 3$
- Saturation might be the dominant effect at the LHC around $y \approx 0$
- Slightly smaller suppression expected in the Υ channel
Summary

- Energy loss $\Delta E \propto E$ due to coherent radiation
 - Neither initial nor final state effect
 - Parametric dependence of $dl/d\omega$ and ΔE predicted

- Heavy-quarkonium suppression predicted from SPS to LHC
 - Good agreement with all existing data
 - Natural explanation for the large x_F J/ψ suppression
 - Model supplemented consistently by saturation effects
 - Supports the assumption of long-lived color octet $Q\bar{Q}$ pair
 - More precise J/ψ and Υ data (and larger y) would help

- Similar phenomena expected for light/heavy hadrons
 - Work in progress