Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

Paloma Quiroga Arias LPTHE, UPMC UNIV. Paris VI & CNRS

[Javier L Albacete, Guilherme Milhano and Juan Rojo] arXiv:1203.1043[hep-ph]

Proton partonic structure - QCD evolution: linear vs non-linear

- Scale dependence of parton distribution functions two different QCD approaches
 - Q² dependence: DGLAP evolution equations $\left(\sim \alpha_s \ln \frac{Q^2}{Q_0^2} \right)$ applicable in collinear factorization
 - small x evolution: BFKL $\left({^\sim } \, {\alpha _s \ln } \, \frac{{x_0 }}{x} \right)_{non \; linear \; terms}$ BK-JIMWLK equations BK + running coupling

- Region of applicability of the two orthogonal approaches
 - DGLAP approach: $x>10^{-5}$, $Q^2>Q_0^2\sim 1$ GeV²
 - running coupling BK (rcBK) fits: $x<10^{-2}$, $Q^2<50$ GeV²
- DGLAP linear evolution eqs. provide accurate description of data [so does rcBK]
 - legitimate question: flexibility of i.c. hiding some interesting QCD dynamics [non-linear behavior]?
 - recent NNPDF [no i.c. bias] fits find deviations w.r.t. low x data excluded from fits

Kinematic range - data & theory

• DGLAP: $x>10^{-5}$, $Q^2 > Q_0 \sim 1-4$ GeV²

both approaches **coexist** in a region

• (rcBK: $x<10^{-2}, Q^2 < 50 \text{ GeV}^2$)

linear approach - DGLAP

• DGLAP evolution equation for vector PDFs $f(x,Q^2)$:

$$\left(\frac{\partial f(x,Q^2)}{\partial \ln(Q^2/Q_0^2)} = \int_x^1 \frac{dy}{y} P\left(\alpha_s(Q^2), x/y\right) f(y,Q^2)\right)$$

linear equation

• Provides evolution to large Q^2 and has no predictive power in the orthogonal x-direction [values of $x \le x_{min}$ DGLAP predictions become unreliable]

 x_{min} = lowest value of x from experimental data

• Initial conditions: specify the PDFs at some low initial scale for all values of x

$$\left(xf(x,Q^2=Q_0^2)\right)$$

NNPDF approach: initial conditions parametrized with artificial neutral networks

[avoid theoretical biases of choosing a particular functional form for the input PDF]

• Linear equation => expected to break for sufficiently small values of Q^2

[gluon densities are higher => higher twists important]

linear approach - DGLAP

- Historically: for many years has provided excellent description of data
- NNPDF implementation (MC based):
 - very sophisticated fitting technology [error propagation]
- Recently: studies show deviations [PLB:686,2010, F.Caola, S.Forte, J.Rojo]
- Difficulty accommodating some phenomena

e.g. geometric scaling

$$\sigma^{\gamma^* p}(x, Q) = \sigma^{\gamma^* p}(\tau), \ \tau = \log\left(\frac{Q^2}{Q_s^2(x)}\right)$$

[can be accommodated but no strong theoretical argument]

non-linear approach - running coupling BK

• rcBK evolution equation for scattering amplitude of q-qbar color dipole with hadronic target:

$$\frac{\partial \mathcal{N}(r,x)}{\partial \ln(x_0/x)} = \int d^2r_1 \mathcal{K}^{run}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) [\mathcal{N}(\mathbf{r_1}, x) + \mathcal{N}(\mathbf{r_2}, x) - \mathcal{N}(r, x) - \mathcal{N}(\mathbf{r_1}, x) \mathcal{N}(\mathbf{r_2}, x)]$$

non-linear equation

[change of hadron structure as smaller values of x are probed]

- Provides evolution in Bjorken-x. No predictive power in Q²
- Onset of black-disk limit: $N(r_s = 1/Q_s(x), x) = \kappa \sim 1$ [def. saturation scale $Q_s(x)$]
- Non-linear equation [non-linear terms required by unitarity preservation. Gluon recombination]
- Applicable for very small values of Q²

Physical interpretation of dipole amplitude
$$\mathcal{N}$$
 F.T.
$$\overbrace{ \phi(x,k_t) = \int d^2r e^{-i\vec{r}\vec{k_t}} \mathcal{N}(r,x) } \underbrace{ \text{LO}}_{\text{integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon distribution}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2} d^2k_t \phi(x,k_t) \right) }_{\text{Integrated gluon}} \underbrace{ \left(xg(x,Q^2) = \int_{-1}^{Q^2}$$

non-linear approach - rcBK

- Similarly good fits to DGLAP + naturally accommodates geometric scaling
 Stasto, Golec-Biernat, Kwiecinski arXiv:0007.192[hep-ph]
- AAMQS implementation: does a very good job describing HERA data arXiv:1012.4408 arXiv:0902.1112

global fits to HERA e-p data (4 free parameters): calculate σ_r and F_2 according to the dipole model with small-x dependence described by rcBK equation. MV initial condition for the dipole amplitude

Albacete, Armesto, Milhano, Quiroga, Salgado

especially latest data (combined HI-ZEUS analysis) quite challenging!

AAMQS calculation of F_L vs latest data

[independent test of the method]

there is some non-linear physics going on here

Interplay between the two approaches

- applicability of both theories based on purely theoretical arguments: asymptotic limits
 - DGLAP: large Q²
 - rcBK: low x

unclear in the intermediate kinematic region

- in the intermediate region agreement with data necessary but not sufficient
- Pertinent question: "are corrections to the limit in which both theories are well
 defined important in the intermediate region?"
 - is the flexibility of initial conditions in DGLAP masking the presence of some underlying physics (like saturation)?
 - is $x_0=0.01$ small enough for the dipole model of AAMQS (rcBK) to be applicable?
- need for systematic studies comparing both approaches
 - check stability of both approaches under changes of the boundary conditions

Strategy

- Fit to a subset of data in a reduced kinematic regime [specific to each approach]
- Then extrapolated to the common unfitted (causally connected) region

• NNPDF: fit large Q² region - backwards evolution towards smaller Q²

saturation inspired cut $Q^2 > Q_{cut}^2 = A_{cut}x^{-\lambda}$

• AAMQS: fit small x region - use resulting dipole parametrization to predict at larger x

$$x < x_{cut} < 0.01$$

(Non-linear?) deviations from NLO DGLAP evolution

Caola, Forte, Rojo, PLB 686, 2010

NNPDF: fits with cuts $Q^2 > Q_{cut}^2 = A_{cut}x^{-\lambda}$

fits tend to systematically underestimate the data

NLO DGLAP: deviations as large as 35% !!) [at low x and low Q^2]

- not corrected by
 - **NNLO** corrections
 - improved treatment of heavy quark effects

EEEE Fit without cuts

Fit with A = 0.5

Fit with A = 1.5

Hints of physics effects beyond the dynamical content of DGLAP evolution equation in the intermediate kinematical region (non-linear effects?)

Strategy - data cuts

- DGLAP-NNPDF cuts: $Q^2 > Q^2_{cut} = A_{cut} x^{-1/3}$: $A_{cut} = 1.5$
- rcBK-AAMQS cuts: $x < x_{cut} = 3x10^{-3}$, $1x10^{-3}$, $3x10^{-4}$, $1x10^{-4}$
- Comparison of extrapolation from both formalisms to same data in unfitted region

Strategy - data cuts

- DGLAP-NNPDF cuts: $Q^2 > Q^2_{cut} = A_{cut} x^{-1/3} : A_{cut} = 1.5 : [59 HERA data points in unfitted region]$
- rcBK-AAMQS cuts: $x < x_{cut} = 3x10^{-3}, 1x10^{-3}, 3x10^{-4}, 1x10^{-4}$
- Comparison of extrapolation from both formalisms to same data in unfitted region

results - rcBK AAMQS different cuts

- Deviations increase with decreasing x_{cut} and increasing Q². MAKES PERFECT SENSE
- rcBK (AAMQS) fits: stable under changing boundary condition
 - non-linear small-x dynamics describes scale dependence of the proton structure in the intermediate (x,Q^2)

results NNPDF - NLO DGLAP

• NLO DGLAP - NNPDF extrapolation to the common unfitted region

NLO DGLAP [NNPDFI.2]

$$A_{cut}=1.5$$

deviation from data at low x and low Q^2

results NNPDF - NNLO DGLAP with heavy quarks

results - all fits

[rcBK] AAMQS

x_{cut}	N_{dat}	N_{dat}^{C}	
$\boxed{1 \cdot 10^{-2}}$	271	0	← no cut
$3 \cdot 10^{-3}$	237	34	
$1 \cdot 10^{-3}$	205	66	
$3 \cdot 10^{-4}$	148	123	
$1 \cdot 10^{-4}$	105	166	

[DGLAP] NNPDF

200 000 000				
$A_{ m cut}$	$N_{ m dat}$	$N_{ m dat}^C$	$N_{ m dat}^D$	$(x_{\min}, Q^2 [\text{GeV}^2])$
no cuts	3372	0	0	$(4.1 \cdot 10^{-5}, 2.5)$
0.2	3363	4	5	$(8 \cdot 10^{-5}, 3.5)$
0.3	3350	14	8	$(10^{-4}, 6.5)$
0.5	3333	25	15	$(1.4 \cdot 10^{-4}, 8.5)$
0.7	3304	38	16	$(1.6 \cdot 10^{-4}, 12)$
1.0	3228	44	19	$(2.1 \cdot 10^{-4}, 15)$
1.2	3164	53	30	$(2.4 \cdot 10^{-4}, 15)$
1.5	3084	59	38	$(2.7 \cdot 10^{-4}, 20)$

$x < 10^{-2}, Q^2 < 50 \text{GeV}^2$

 N_{dat} =data included in the fit

 N^{C}_{dat} =data in the causally connected region N^{D}_{dat} =data in the disconnected region

• Relative distance between theoretical and experimental results: measures the absolute size

method

of deviations

$$d_{rel}(x,Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\frac{1}{2} (\sigma_{r,th} + \sigma_{r,exp})}$$

fit with $x_{cut} = 10^{-4}$, $A_{cut} = 1.5$

small deviations & alternate in sign in all unfitted region

extrapolate

Relative distance between theoretical and experimental results: measures the absolute size

method

extrapolate

of deviations

$$d_{rel}(x,Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\frac{1}{2} (\sigma_{r,th} + \sigma_{r,exp})}$$

1.2

1.1

method

Statistical distance between theoretical and experimental results: measures statistical significance of the deviation in units of standard deviation

$$d_{stat}(x,Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\sqrt{\left(\Delta\sigma_{r,th}^2 + \Delta\sigma_{r,exp}^2\right)}}$$

meaningless when large theory errors

 $=-0.8\pm 1.1$

 $\langle d_{stat}^{DGLAP} \rangle$

extrapolate

$$\langle d_{\text{stat}}^{\text{rcBK}} \rangle = 0.3 \pm 9$$

results - rcBK (AAMQS) low-x extrapolation

Need to test:

- predictive power of rcBK approach
- (un)sensitivity to boundary effects encoded in different i.c. for evolution under inclusion/exclusion of data subsets

extrapolate results for $F_2(x,Q^2)$ & $F_L(x,Q^2)$ to tiny values of x [smaller than currently available]

$$\sigma_r(y, x, Q^2) = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

$$F_j^{x_{cut}^i}/F_j^{no\ cut}, \quad j=2, L$$

ratio of:

- structure function extrapolated to low-x from on a fit with cut
- to the one extrapolated from the fit to all available data

results - rcBK (AAMQS) low-x extrapolation

results - rcBK (AAMQS) low-x extrapolation

Longitudinal structure function $F_2(x,Q^2)$

$$x_{cut} = 3 \cdot 10^{-3}, \ 1 \cdot 10^{-3}, \ 3 \cdot 10^{-4}, \ 1 \cdot 10^{-4}$$

no F_L data included in any fit [calculated from AAMQS param]

converge x~10⁻⁴ within 1% [independently of the cut]

 Convergence: rcBK admit asymptotic solutions independent of i.c.

This predictions could be experimentally verified [LHeC or EIC]

Implications for LHC phenomenology

- deviations from linear evolution => data should be excluded from DGLAP analysis
- estimate theoretical uncertainty rendered from potential deviations in DGLAP fits
- calculate benchmark LHC cross sections using PDF sets obtained through
 - I) fit to all data (without small-x kinematical cuts: $A_{cut}=0$)
 - 2) fit excluding small-x data (with small-x kinematical cuts: $A_{cut}=1.5$)

Only PDF uncertainties considered

Implications for LHC phenomenology

- deviations from linear evolution => data should be excluded from DGLAP analysis
- estimate theoretical uncertainty rendered from potential deviations in DGLAP fits
- calculate benchmark LHC cross sections using PDF sets obtained through

Conclusions

Precision study: suitability of rcBK and DGLAP approaches to describing HERA data in moderate (x,Q^2) region. Setting common test ground: selected kinematic cuts to both fitting procedures and perform systematic comparisons

- DGLAP fits: sensitivity to exclusion of small-x data sets suggests novel physics obscured by its encoding in the freedom of i.c.(?)
- rcBK fits: robust agains exclusion of data above some x_{cut} (with x_{cut} as low as 10^{-4})
- Predictive power at low-x of the approach:
 - rcBK has predictive power towards low x: yields robust predictions at small-x
 [can be confronted with data from LHeC and EIC]
 - DGLAP has no predictive power: uncertainties grow very fast for low x outside data region
- The saturation line can be delineated: kinematic regions where DGLAP and rcBK differ substantially can be identified
- Exclusion of small-x data from DGLAP: significant increase on theoretical uncertainty for standard production cross sections at the LHC

Thank you!

Backup slides

Introduction

- Knowledge of partonic structure of the proton at all relevant scales: crucial role in analysis of data from HE colliders => acquired by phenomenological parton fits to existing data [perturbative QCD based]
- Different QCD approaches for the description of the scale dependence of the parton distribution functions [strategy of resuming to all orders large logarithms]

In the limit of small Bjorken-x [HE]:

deviations from standard collinear perturbation theory are expected on account of large gluon densities => non-linear processes become relevant

Unitarity sets upper limit on the growth rate of gluon densities: realized by inclusion of recombination processes

highly probable in high density environment

$$\frac{\partial \phi(\mathbf{x}, \mathbf{k_t})}{\partial \ln(\mathbf{x_0}/\mathbf{x})} \approx \mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t}) - \phi(\mathbf{x}, \mathbf{k_t})^2$$

the Color Glass Condensate is the correct framework in which to address small-x physics

Interplay between radiation and recombination processes => dynamical transverse momentum scale: the saturation scale Q_s [onset of non-linear corrections]

once non-linearities are included: a dynamical scale is generated and this immediately means collinear factorization does not hold

Interplay between the two approaches

- Need for systematic studies comparing both approaches
- Natural procedure to elucidate wether interesting dynamics is hidden in boundary conditions:
 - systematically displace the boundaries & check stability of both approaches under such changes
 - Sensitivity of the fits to changes in boundary conditions:
 - PDFs (DGLAP)
 - UDG (rcBK)

contaminated by physics effects beyond the dynamical content of the evolution equation

non-linear approach - rcBK: AAMQS implementation

Albacete, Armesto, Milhano, Quiroga, Salgado (AAMQS) arXiv:1012.4408[hep-ph]

• Dipole model formulation of e-p scattering process: virtual photon-proton cross section

$$\sigma_{T,L}(x,Q^2) = 2\sum_{f} \int_0^1 dz \int d^2 \mathbf{b} d^2 \mathbf{r} |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \mathcal{N}(\mathbf{b}, \mathbf{r}, x)$$

light-cone wave function for the virtual photon to fluctuate into a q-qbar dipole of quark flavor f

• Observables of interest related to the γ^* -proton cross section

$$F_2(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_T + \sigma_L)$$
$$F_L(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} \sigma_L$$

$$\sigma_r(y, x, Q^2) = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

non-linear approach - rcBK: AAMQS implementation

• Initial conditions [for the rcBK evol. eq. $\frac{\partial \mathcal{N}(r,x)}{\partial \ln(x_0/x)}$] in AAMQS global fits to data

$$\left(\mathcal{N}^{MV}(r,x_0) = 1 - e^{-\left(\frac{r^2 Q_{s,0}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{r\Lambda_{QCD}}\right)}\right)$$

- 2 fit parameters:
 - initial saturation scale [at $x_0=0.01$]
 - anomalous dimension [steepness of the dipole amplitude fall-off with decreasing r]

Dumitru and Petreska arXiv:1112.4760[hep-ph]

- the anomalous dimension follows from taking higher corrections in the MV semiclassical calculation. $\gamma \sim 1 + \#A^{2/3}$
- results for dipole amplitude match AAMQS fits to proton data

non-linear approach - rcBK: AAMQS implementation

• b-dependence of dipole amplitude $\mathcal{N}(b,r,x)$: governed by long-distance non-perturbative phenomena [extra model input]: AAMQS resorts to translational invariance approximation

average over impact parameter

$$2\int d\mathbf{b} \rightarrow \sigma_0$$

[average transv. area of quark distrib. in transv. plane]

regularization of the coupling: phase space for all dipoles explored [arbitrarily large]
 need to regulate in the IR

$$\alpha_s(r^2 < r_{fr}^2) = \frac{12\pi}{(11N_c - 2n_f) \ln\left(\frac{4C^2 \blacktriangleleft}{r^2 \Lambda_{QCD}}\right)}$$

$$\alpha_s(r^2 \ge r_{fr}^2) = \alpha_{fr}$$

momentum space [calculation of the quark part of ß]

Fourier transform

coordinate space

 $\Lambda_{QCD} = 0.241 \text{GeV}$

- AAMQS global fits to HERA e-p data: calculate σ_r and F_2 according to the dipole model with small-x dependence described by rcBK equation. MV initial condition for the dipole amplitude
- 4 free parameters: $\sigma_0, C^2, Q_{s,0}^2, \gamma$

$AMQS\ setup.$ Dipole model formulation of e+p scatt. + rcBK eq.

dipole model formulation of the e-p scattering process

$$\sigma_r(y, x, Q^2) = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2) \quad \mathbf{X} < 1 \quad \begin{cases} F_2(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_T) + (\sigma_L) \\ F_L(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_T) + (\sigma_L) \end{cases}$$

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_T + \sigma_L)$$

$$F_L(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_L)$$

virtual photon-proton cross section [long. & trans. polarization of γ^*]

$$\sigma_{T,L}(x,Q^2) = 2\sum_{f} \int_{0}^{1} dz \int d^2 \mathbf{b} d^2 \mathbf{r} |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \mathcal{N}(\mathbf{b}, \mathbf{r}, x)$$

[light-cone wave function for γ^* to fluctuate into a q-qbar dipole]

Im. part of dipole-target scatt. amplitude [all strong interaction and x dependence]

$AAMQS\ setup.$ Dipole model formulation of e+p scatt. + rcBK eq.

* small-x dynamics of the dipole scattering amplitude described by rcBK equation

$$\frac{\partial N(r,x)}{\partial \ln(x_0/x)} = \int d^2r_1 \mathbf{K}^{run}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2})[N(r_1, x) + N(r_2, x) - N(r, x) - N(r_1, x)N(r_2, x)]$$

$$\text{non-linear term}$$

evolution kernel including rc corrections:

Balitsky, Phys.Rev.D75:014001,2007

$$K^{\text{run}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 \, r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

* Regularization of the coupling: phase space for all dipoles sizes explored [arbitrarily large] => need to regulate in the IR

$$\alpha_s(r^2 < r_{fr}^2) = \frac{12\pi}{(11N_c - 2n_f) \ln\left(\frac{4C^2}{r^2\Lambda_{QCD}^2}\right)} \qquad \alpha_s(r^2 \ge r_{fr}^2) = \alpha_{fr}$$

Fourier transform: momentum to coordinate space

comparison of evolutions

Equati	Equation	Evolution variable	Predictive power		Initial	Implementation	range of applicability
	Equation		low x	high Q ²	conditions	Implementation	(x,Q^2)
DGLAP	linear	Q^2	×	✓	$xf(x,Q_0^2)$	NNPDF	(>10 ⁻⁵ ,>1-4)
rcBK	non-linear	x	✓	×	$\mathcal{N}(r,x_0)$	AAMQS	(<10 ⁻² , < 50)

both approaches **coexist** in a region

(Non-linear?) deviations from NLO DGLAP evolution

non-linear approach - rcBK

results - NLO DGLAP & rcBK fits with cuts

NNPDF and AAMQS extrapolation to the common unfitted region NNPDF $A_{cut} = 1.5$ AAMQS $x_{cut} = 10^{-4}$ 1.6 1.6 $Q^2=2.7 \text{ GeV}^2 \text{ NNPDF} \qquad Q^2=4.5 \text{ GeV}^2$ Q²=2.7 GeV²AAMQS × $Q^2 = 6.5 \text{ GeV}^2$ 1.2 1.2 NLO DGLAP [NNPDF1.2] ${\bf Q}_{\bf r}$ 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 **1.6** $Q^2=10 \text{ GeV}^2$ $Q^2 = 8.5 \text{ GeV}^2$ $Q^2=12 \text{ GeV}^2$ $Q^2=45 \text{ GeV}^2$ 1.4 1.2 1.2 0.8 0.8 0.6 0.6 0.4 0.4 Q~3GeV 0.2 0.2 0.001 1e-05 0.001 0.01 0.010.0001 0.001 0.0001 0.01 0.0001 0.0001 0.001 1e-05 X very good description of data even deviation from data at low x and low Q^2

with the more restrictive cut

Relative distance between theoretical and experimental results: measures the absolute size of deviations

$$d_{rel}(x,Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\frac{1}{2} (\sigma_{r,th} + \sigma_{r,exp})}$$

- theoretical predictions from DGLAP ($\sigma_{r, DGLAP}$) and rcBK ($\sigma_{r, rcBK}$) and experimental data $(\sigma_{r, exp})$: values of the reduced cross section in the common extrapolated region
- **Statistical distance** between theoretical and experimental results: statistical significance of the deviation in units of standard deviation

$$d_{stat}(x,Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\sqrt{\left(\Delta\sigma_{r,th}^2 + \Delta\sigma_{r,exp}^2\right)}}$$
 meaningless when large theory errors

- the theoretical error for rcBK (AAMQS), $\Delta\sigma^2_{r, rcBK}$: estimated as maximal difference among the theoretical predictions corresponding to fits with different cuts [probably underestimated] => values of d_{stat}^{rcBK} overestimated]
- for DGLAP (NNPDF) full information on correlated systematics is taken into account

method

 Statistical distance between theoretical and experimental results: measures statistical significance of the deviation in units of standard deviation

$$d_{stat}(x, Q^2) = \frac{\sigma_{r,th} - \sigma_{r,exp}}{\sqrt{\left(\Delta \sigma_{r,th}^2 + \Delta \sigma_{r,exp}^2\right)}}$$

theoretical errors underestimated

huge theoretical uncertainty at low-x

