γ at hadronic machines

V. Vagnoni INFN Bologna 8th meeting on B physics Genova, 6 February 2012

Outline

- Why γ at hadron colliders?
- Various paths to the quest of $\boldsymbol{\gamma}$
 - time-integrated tree level: ADS, GLW, GGSZ
 - time-dependent tree level: $B_s \rightarrow D_s K$
 - time-dependent with penguins: $B^0 \rightarrow \pi^+ \pi^-$, $B_s \rightarrow K^+ K^-$
- Will basically cover γ at LHCb

- for CDF see Michael Morello's talk

• A look into the future

Why γ?

- Experimental uncertainty on γ still large \rightarrow less constrained amongst the UT angles
- Tree level allows for a NP-free determination
 → building block for any UT fit beyond the SM

Note that today UTfit and CKMfitter roughly agree on the size of the overall experimental uncertainty

And why at hadron colliders?

- Measurements from B factories limited by statistics
 - dominated by GGSZ analysis
- No tagging required for time-integrated analyses
 - Full power of large beauty cross section in hadronic collisions can be exploited!
 - Ideal measurement for hadronic machines, provided that signals with good purity can be triggered and reconstructed
- Hadron colliders also give exclusive access to timedependent study of $B_s \rightarrow D_s K$ decays

		$\sigma(b\overline{b})$	$\sigma(inel)/\sigma(bb)$	∫Ldt
	CDF	~ 100 mb	1000	~10fb ⁻¹
LHCh THCp	LHCb	~290 mb	~300	~1fb ⁻¹ (end of 2011)
BABAR BABAR	BaBar BELLE	~1 nb	~4	425 fb ⁻¹ (BaBar) 700 fb ⁻¹ (BELLE)

γ from B \rightarrow D^(*)K^(*)

Interference between $b \rightarrow u$ and $b \rightarrow c$ transistions

Related variables (depend on the *B* meson decay channel): $r_B = \frac{|A_{b \to u}|}{|A_{b \to c}|} < \frac{r_B \sim 0.1 \text{ For charged } B \text{ mesons}}{r_B \sim 0.3 \text{ For neutral } B \text{ mesons}}$ $\delta_{\rm B} \text{ strong phase (CP conserving)}$ Favoured

$$A(B^{-} \rightarrow D^{0}K^{-}) = A_{B}$$
$$A(B^{+} \rightarrow \overline{D}^{0}K^{+}) = A_{B}$$

Suppressed

$$A(B^{-} \rightarrow \overline{D}^{0}K^{-}) = A_{B}r_{B}e^{i(\delta_{B}-\gamma)}$$

 ${\cal A}_{{\cal B}}\,$ strong amplitude

$$\delta_{B} = \delta_{1} - \delta_{2}$$

strong phase difference between V_{ub} and V_{cb} mediated transitions

 r_{B} is a crucial parameter - the sensitivity on γ depends on it

Gronau-London-Wyler (GLW)

• In the GLW method the D meson is reconstructed into a CP eigenstate $D^0, \overline{D}^0 \rightarrow K^+ K^-, \pi^+ \pi^-, K^0_S \pi^0, K^0_S \omega, K^0_S \phi$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \frac{\pm 2 \cdot r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$$
$$\Gamma(B^- \to D_{ee}K^-) + \Gamma(B^+ \to D_{ee}K^+) = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$$

$$R_{CP\pm} = 2 \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)} = 1 + r_B^2 \pm 2 \cdot r_B \cos\delta_B \cos\gamma$$

M.Gronau, D.London, D.Wyler, PLB253, 483 (1991); PLB 265, 172 (1991)

- Neutral modes challenging at hadron colliders
 - BaBar, Belle, CDF and LHCb all use the CP even D decays to K⁺K⁻ and $\pi^+\pi^-$, while BaBar and Belle also study the CP odd D decays to K_S π^0 , K_S ω and K_S ϕ
- Can also be done with $B^0 \rightarrow D_{CP\pm} K^{*0}$

GLW at LHCb

- Preliminary results with 2010 data only (L=36 pb⁻¹)
 - work in progress for 2011 update
- Not yet competitive with B factories, but LHCb will soon dominate with 1 fb⁻¹
 LHCb-CONF-2011-031

Atwood-Dunietz-Soni (ADS)

- The ADS method uses the interference between the $B^- \rightarrow D^0 K^$ followed by the doubly Cabibbo-suppressed $D^0 \rightarrow K^+ \pi^-$ and the suppressed $B^- \rightarrow \overline{D}^0 K^-$ followed by the Cabibbo-allowed $\overline{D}^0 \rightarrow K^+ \pi^-$
 - Can be made with other modes involving a π^0 or a photon in the final state, but only $K\pi$ mode competitive at hadronic machines

$$R_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{-}\pi^{+}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\gamma\cos(\delta_{B} + \delta_{D})}$$

$$A_{ADS} = \frac{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) - \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\Gamma(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})}{R_{ADS}} / R_{ADS}$$

$$r_{D} = \frac{\left|A(D^{0} \rightarrow K^{+}\pi^{-})\right|}{\left|A(D^{0} \rightarrow K^{-}\pi^{+})\right|} = 0.0613 \pm 0.0010 \qquad \qquad \bigvee_{cb} B^{+} \rightarrow D^{0}K^{+} \xrightarrow{DCS} D^{0} \rightarrow \widehat{f} \xrightarrow{Same final state} Same final State}$$
D.Atwood,I.Dunietz,A.Soni,PRL78,3357(1997)

ADS at LHCb

Still large room for

improvement already

1.5

2

LHCb Preliminary

343 pb⁻¹

2.5

3 3.5

9

R_{ADS}(DK)

Measurement performed with 0.34 fb⁻¹

 $R_{ADS} = (1.66 \pm 0.39 \pm 0.24) \times 10^{-2}$ $A_{ADS} =$ $-0.39\pm 0.17\pm 0.02$

ADS at LHCb

• Sizeable asymmetries may be found also using $B^- \rightarrow D\pi^-$ decays, although $r_B \approx 0.01$ in this case

Impact of LHCb for ADS

- LHCb already very competitive with 1/3 of 2011 statistics
 - Good agreement with existing measurements
- Will dominate the sector soon

Towards $B \rightarrow DK^*$: first measurement of $\overline{B}_s \rightarrow D^0K^{*0}$

- Very large branching fraction
 - dangerous background for Cabibbo-suppressed $B^0 \rightarrow D^0 K^{*0}$
- Seen with a significance of 9σ
- Branching fraction measured relative to $B^0 \rightarrow D^0 \rho^0$

 $\frac{12}{10}$ $\frac{12$

m(π* π) (MeV/c²)

m(K* π) (MeV/c2)

Phys. Lett. B706 (2011)

$$\frac{\mathcal{B}\left(\bar{B}_{s}^{0}\to D^{0}K^{*0}\right)}{\mathcal{B}\left(\bar{B}^{0}\to D^{0}\rho^{0}\right)} = 1.48\pm0.34\pm0.15\pm0.12, \text{ f}_{d}/\text{f}_{s}$$

$$\mathcal{B}\left(\bar{B}_{s}^{0}\to D^{0}K^{*0}\right) = (4.72\pm1.07\pm0.48\pm0.37\pm0.74)\times10^{-4}, 12$$

Measurement of Cabibbo-suppressed $\bar{B}^0 \rightarrow D^+ K^- \pi^+ \pi^- e B^- \rightarrow D^0 K^- \pi^+ \pi^-$

- B⁰→DKππ yield is 40% wrt that of B⁰→DK, and B⁻→DKππ is 25% less than B⁻→DK
 - Significant contribution to γ is expected
- Expect to observe B_s→D_sKππ decay very soon, to be used for time-dependent γ

$$\frac{\mathcal{B}(B^0 \to D^+ K^- \pi^+ \pi^-)}{\mathcal{B}(\overline{B}{}^0 \to D^+ \pi^- \pi^+ \pi^-)} = (5.9 \pm 1.1 \pm 0.5) \times 10^{-2}$$
$$\frac{\mathcal{B}(B^- \to D^0 K^- \pi^+ \pi^-)}{\mathcal{B}(B^- \to D^0 \pi^- \pi^+ \pi^-)} = (9.4 \pm 1.3 \pm 0.9) \times 10^{-2}$$

13

First observation of Cabibbo-suppressed $\Lambda_b \rightarrow D^0 p K^- decays$

- Seen with 6σ significance
- Also b-baryon decays can play a role in the quest for $\boldsymbol{\gamma}$

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^0 p K^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} = 0.112 \pm 0.019 \,{}^{+0.011}_{-0.014}$$

Towards γ **from GGSZ** at LHCb

- Multibody D decays like $D^0 \rightarrow K_s \pi \pi$ can also be used to extract γ from the interference between $B^- \rightarrow D^{(*)0}K^-$ and $B^- \rightarrow \overline{D}^{(\dot{*})0}K^-$
 - Dalitz plot analysis allows simultaneous determination of the weak phase difference γ , the strong phase difference $\delta_{\rm B}$ and the ratio of the amplitudes r_{B}

15

Time-dependent γ

- Tree-level γ also accessible via $B_s \rightarrow D_s K$ and $B^0 \rightarrow D^{\pm} \pi$
- $B_s \rightarrow D_s K$ unique opportunity at hadronic machines
 - characterized by large interference
 - Both b→u and b→c diagrams are colour allowed
 - time-dependent analysis sensitive to $\gamma\text{-}\varphi_s$
 - can determine γ in conjunction with other measurements of the B_s mixing phase φ_s

- Requires tagging, but also untagged analysis sensitive to γ owing to $\Delta\Gamma_{\rm s}{\ne}0$
- First step now is to observe the signal and measure the branching ratio
 arXiv:1112.4311
 - Δm_s already precisely measured $\Delta m_s = 17.63 \pm 0.11 \text{ (stat)} \pm 0.02 \text{ (syst) ps}^{-1}$

On the road to time-dependent $\gamma : f_s/f_d$

- Relevant measurement as this is a basic ingredient for relative B_s branching ratio measurements
- Performed by determining the relative yields of $B^0 \rightarrow D^-\pi^+$, $B^0 \rightarrow D^-K^+$, $B_s \rightarrow D_s \pi^+$
 - As a by-product of the analysis, also the branching fraction of B⁰→D⁻K⁺ has been measured

Phys. Rev. Lett. 107 (2011) L=35 pb⁻¹

$$f_s/f_d = 0.253 \pm 0.017^{\text{stat}} \pm 0.017^{\text{syst}} \pm 0.020^{\text{theor}}$$

 $\mathcal{B}(B^0 \to D^- K^+) = (2.01 \pm 0.18 \pm 0.14) \times 10^{-4}$

Mass (MeV/c^2) 17

Mass (MeV/c^2)

- First observation of $B_{c} \rightarrow D_{c} K$ at LHCb
- World's best measurement of $B_{c} \rightarrow D_{c}h$ branching fractions
- With full 2011 data set (1 fb⁻¹) LHCb expects to reconstruct 1300-1500 events
- First results for timedependent CP violation expected for spring/ summer 2012

LHCb-CONF-2011-057

γ from penguins

- B→h⁺h^{'-} decays provide yet another path to γ
 - The direct and mixing-induced CP asymmetry terms of $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ are sensitive to γ

 $\mathcal{A}_{f}^{\mathcal{CP}}(t) = \frac{\mathcal{A}_{f}^{dir}\cos(\Delta m t) + \mathcal{A}_{f}^{mix}\sin(\Delta m t)}{\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \mathcal{A}_{f}^{\Delta}\sinh\left(\frac{\Delta\Gamma}{2}t\right)}$

- 4 equations but too many unknowns
 - − $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ decay diagrams related by d-s quark exchange (U-spin symmetry)
 - Making use of the U-spin symmetry and other measurements of the mixing phases ϕ_d and ϕ_s , γ can be extracted
 - Other B→h⁺h^{'-} modes useful to check and constrain U-spin validity

R.Fleischer PLB 459 (1999) 306 R. Fleischer and R. Knegjens EPJ c71 (2011)1532

Direct CP asymmetries in B \rightarrow K\pi

The raw asymmetries measured in data must be corrected for detector-induced $\chi^{+}\pi^{-}/\pi^{-}K^{+}$ charge asymmetries and B production asymmetry **LHCb-CONF-2011-042**

Direct CP asymmetries in B \rightarrow K\pi

 $A_{CP}(B^0 \to K^+\pi^-) = -0.088 \pm 0.011(\text{stat}) \pm 0.008(\text{syst})$

World's best and first observation of CP violation in the B system at a hadron collider

 $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.27 \pm 0.08 (\text{stat}) \pm 0.02 (\text{syst})$

First evidence of CP violation in B_s decays

Searching for rare decays

LHCb-CONF-2011-042

$$\begin{aligned} \mathcal{BR}(B^0 \to K^+ K^-) &= (0.13^{+0.06}_{-0.05}(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-6} \\ \mathcal{BR}(B^0_s \to \pi^+ \pi^-) &= (0.98^{+0.23}_{-0.19}(\text{stat}) \pm 0.11(\text{syst})) \times 10^{-6} \\ \text{first observation of } B^0_s \begin{subarray}{l} \rightarrow \pi\pi \text{ with a significance of 5.3 } \sigma \end{aligned}$$

Towards time-dependent asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

- Large samples of $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ already observed with 1/3 of 2011 statistics
- Measurement of all B→h⁺h^{'-} branching fractions and first measurement of time-dependent CP asymmetries are being finalized

A look into the future of flavour physics

Prospects for γ **at Super (LHC)B factories**

- The ultimate precision on γ for both the LHCb upgrade and Super B factories are comparable at the level of ~1° for any given channel
- According to the present schedule and target physics performance, the Super B factories can achieve such a result some years in advance with respect to a Super LHCb

Dream scenario for a SuperB at 75 ab⁻¹

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5{\rm fb}^{-1}$	$75\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$	$50{ m fb}^{-1}$	
γ from $B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean

Conclusions

- First results from LHCb (up to ~0.3 fb⁻¹) have already an impact on the world average for γ
- In the course of 2012, exploiting the full 2011 dataset and even more, LHCb results will start dominating
 - Many modes in the pipeline
 - Naïve extrapolation to ~1 fb⁻¹ of 7 TeV collisions gives $\sigma(\gamma) \approx 7^{\circ}$
- Access to γ via time-dependent measurements unique opportunity at hadronic machines
 - In 2012 the first measurements using $B_s \rightarrow D_s K$ and $B \rightarrow hh$ will be unveiled
- Expected sensitivity for ~5 fb⁻¹ at 14 TeV is $\sigma(\gamma) \approx 2-3^{\circ}$
- LHCb upgrade will benefit from significantly improved trigger efficiency
 - Sub-degree precision possible with 50 fb⁻¹ (CERN-LHCC-2011-001)
- Nice competition with Super B factory projects which aim to similar precision with 50-75 ab⁻¹