$\phi_{\rm s}$ and ${\rm B}^0_{\rm s}$ mixing at LHCb

Emilie Maurice, on behalf of LHCb collaboration

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

6 February 2012

イロト イポト イヨト イヨト

B physics workshop Genova

E. Maurice CPPM

 ϕ_s and B_s^0 mixing at LHCb

6 February 2012 1 / 31

Sac

OUTLINES

Introduction

 $\Delta m_{\rm s}$ measurement

 $\phi_{\rm s}$ measurement

Conclusions and prospects

E. Maurice CPPM

ロ > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0
</p>

6 February 2012 2 / 31

Phenomenology

In the Standard Model, neutral B_s⁰ mesons oscillate via box diagrams

B⁰_s meson evolves as a superposition of flavour eigenstates:

$$irac{\partial}{\partial t} \begin{pmatrix} |\mathbf{B}_{\mathrm{s}}^{0}(t)
angle \\ |\overline{\mathbf{B}_{\mathrm{s}}^{0}}(t)
angle \end{pmatrix} = \left(\mathbf{M} - irac{\mathbf{\Gamma}}{2}
ight) \begin{pmatrix} |\mathbf{B}_{\mathrm{s}}^{0}(t)
angle \\ |\overline{\mathbf{B}_{\mathrm{s}}^{0}}(t)
angle \end{pmatrix}$$

- Mass difference : $\Delta m_{\rm s} = M_H M_L$
- Width difference : $\Delta \Gamma_s = \Gamma_L \Gamma_H$

200

PHENOMENOLOGY: ϕ_s

Interference between mixing and decay :

$$\phi_{\rm s} = \Phi_M - 2\Phi_D$$

Standard Model: $\phi_{s}^{SM} = -2 \arg(-\frac{V_{Ls}V_{tb}^{*}}{V_{cs}V_{tb}^{*}}) + \delta_{penguins}^{SM}$

Neglecting penguins: $\phi_{\rm s}^{\rm SM} = -(0.0363 \pm 0.0017)$ rad

If New Physics: ϕ_s can be larger !

E. Maurice CPPM

4/31

nar

LHCB DETECTOR

LHCb designed to study CP violation and rare decays in B and charm sector

Single-arm forward spectrometer

- Tracking system: IP resolution ~ 15 μ m (at high $p_{\rm T}$), $\delta p/p = 0.4\%$
- RICH system:
 Good separation (3σ) between hadrons
 (p ~ [2, 100] GeV/c)
- Calorimeters: Energy measurement, identify π⁰, γ, e
- Muon detector
- Trigger: Rate: 40MHz reduce to 3kHz

イロト イポト イヨト イヨト

20C

LHCB: 2011 DATA TAKING

2011 data taking at LHCb, at $\sqrt{s} = 7$ TeV

- ► Detector's efficiency > 90 %
- ► 1.1 fb^{-1} of data recorded
- ▶ 99 % of data good for physics

イロト イポト イヨト イヨト

$\Delta m_{\rm s}$ and $\phi_{\rm s}$ measurement presented here are made with 340 pb⁻¹

E. Maurice CPPM

6 February 2012 6 / 31

nar

$\Delta m_{\rm s}$ measurement

LHCb-CONF-2011-050

E. Maurice CPPM

$\Delta m_{\rm s}$ measurements

Experimental status :

- CDF, Phys. Rev. Lett. 97 062003 (2006), $\mathcal{L} = 1 \text{ fb}^{-1}$ $\Delta m_{\rm s} = 17.77 \pm 0.10(\text{stat}) \pm 0.07(\text{syst}) \text{ ps}^{-1}$
- ► LHCb, LHCb-PAPER-2011-010, $\mathcal{L} = 36 \text{ pb}^{-1}$ $\Delta m_{\rm s} = 17.63 \pm 0.11 (\text{stat}) \pm 0.02 (\text{syst}) \text{ ps}^{-1}$

LHCb was already competitive with the most precise published measurement

Presentation of the LHCb measurement with $\mathcal{L} = 340 \text{ pb}^{-1}$

Analysis of $B_s^0 \rightarrow D_s^- \pi^+$ channels :

- ▶ $B_s^0 \rightarrow D_s^- (\phi(K^+K^-)\pi^-)\pi^+)$
- $B_s^0 \rightarrow D_s^- (K^{*0}(K^+\pi^-)K^-)\pi^+$
- $\blacktriangleright \ B^0_s \rightarrow D^-_s (K^+ K^- \pi^-) \pi^+$

(ロト・(局ト・(日ト・(日ト

$\Delta m_{\rm s}$ strategy

- 1. Trigger and select $B_s^0 \rightarrow D_s^- \pi^+$ events
- 2. Measure mass
- 3. Measure decay time : resolution and acceptances
- 4. Tag initial flavour of B_s^0 meson
- 5. Simultaneous unbinned maximum likelihood fit Common physical parameters: $M_{\rm B_{c}^{0}}, \Gamma_{s}, \Delta m_{s}$
- 6. Evaluate the systematics

nar

SIGNAL DESCRIPTION

 $S_m(m)$: single gaussian distribution (same mean and width for all decays)

 $S_t(t, q | \sigma_t, \eta)$ depends on tagging decision

Untagged event: $S_{t}(t,q|\sigma_{t},\eta) \propto (\Gamma_{s}e^{-\Gamma_{s}t}\cosh(\frac{\Delta\Gamma_{s}}{2}t)) \otimes \underbrace{G(t,\sigma_{t})}_{(t,\sigma_{t})} \times \underbrace{\epsilon(t)}_{(t,\sigma_{t})} \times \underbrace{\epsilon(t,\sigma_{t})}_{(t,\sigma_{t})} \times \underbrace{\epsilon(t,\sigma_{t})}_{(t,\sigma_{t$ t resolution • Tagged event: $S_t(t, q | \sigma_t, \eta) \propto$ $\left(\Gamma_{s}e^{-\Gamma_{s}t}\left(\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right)+q\left(1-2\omega(\eta)\right)\cos(\Delta m_{s}t)\right)\right)\otimes\underbrace{G(t,\sigma_{t})}_{\epsilon}\times\underbrace{\epsilon(t)}_{\epsilon}\times\underbrace{\epsilon(t)}_{sig}$ t resolution t accentance ϵ_{sig} : signal tagging efficiency ω : mistag q: state of the mixing: $+1 (B_s^0 \to B_s^0 \text{ or } \overline{B}_s^0 \to \overline{B}_s^0), -1 (B_s^0 \to \overline{B}_s^0 \text{ or } \overline{B}_s^0 \to B_s^0)$

E. Maurice CPPM

DQ P 6 February 2012

10/31

DQ P

11/31

FLAVOUR TAGGING

LHCb-PAPER-2011-027, LHCb-CONF-2011-003

Determination of the initial flavor of the B particle :

- Opposite-side tag: charge from leptons, K, inclusive vertex
- Same-side tag: K from fragmentation quark

OPTIMISATION, CALIBRATION OF OS TAGGING

- 1. Selection of the taggers (μ , e, K, Vtx) Optimization of the cuts to maximize the tagging power, in B⁺ \rightarrow J/ ψ K⁺ channel
- 2. Combination of the taggers decision:

 \rightarrow Neural Network to obtain the OS mistag probability η Trained on MC B⁺ \rightarrow J/ ψ K⁺, based on topological and kinematic event properties \rightarrow Calculation to obtain the OS single tagging decision

3. Calibration of mistag probability (η) wrt measured mistag fraction (ω) Correction function: $\omega = p_0 + p_1(\eta - \langle \eta \rangle)$ extracted from $B^+ \rightarrow J/\psi K^+$ If calculated mistag is well calibrated: $p_0 - p_1\langle \eta \rangle = 0$

PERFORMANCE OF THE FLAVOUR TAGGING

OS tagging performances are checked in $B^+ \to J/\!\psi K^+, B^0 \to J/\!\psi K^{*0}, B^0 \to D^{*-} \mu^+ \nu_\mu$

Channels	$\varepsilon_{\text{tag}}[\%]$	ω [%]	$\varepsilon_{ m tag} D^2 [\%]$	
Evt-by-evt values: using η				
$B^+ \rightarrow J/\psi K^+$	27.3 ± 0.1	36.1 ± 0.8	2.10 ± 0.24	
${ m B}^0 ightarrow { m J}\!/\psi { m K^*}^0$	27.3 ± 0.3	36.2 ± 0.8	2.09 ± 0.24	
$B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$	30.5 ± 0.1	35.6 ± 0.8	2.53 ± 0.27	
$B_s^0 \rightarrow J/\psi \phi$	24.9 ± 0.5	36.1 ± 0.8	1.91 ± 0.23	

OS tagging performance at CDF: $\varepsilon_{\rm tag} D^2 = 1.2 \pm 0.2\%$ (arXiv.1112.1726v1)

イロト イポト イヨト イヨト

For Δm_s measurement:

- If OS tagging decision, use mistag probability η
- ► If no OS tagging decision, but SS tagging decision → use free global ω_{SS} (as not enough statistics to perform the calibration)
- If OS and SS tagging decisions: keep the one with the smallest η

 $\begin{array}{ll} \mbox{Performances in } B^0_s \rightarrow D^-_s \pi^+ : \\ \mbox{Opposite side: } \varepsilon_{\rm tag} = 29.0 \pm 0.5\%, & \varepsilon_{\rm tag} D^2 = 3.1 \pm 0.8\% \\ \mbox{Same side: } \varepsilon_{\rm tag} = 12.2 \pm 0.4\% & \varepsilon_{\rm tag} D^2 = 1.2 \pm 0.4\% \end{array}$

E. Maurice CPPM

6 February 2012 13 / 31

DQ P

 $B_s^0 \rightarrow D_s^- (\phi(K^+K^-)\pi^-)\pi^+: 4371 \pm 91$

LHCb preliminary

data

MASS DISTRIBUTION

Trigger and selection: lifetime bias

Background:

- Physical: B_d^0 , Λ_b with 1 misidentified daughter
- ► Combinatorial

5400

*) Q (~

DECAY TIME RESOLUTION AND ACCEPTANCE

Decay time resolution

- Single gaussian, event-by-event time uncertainty
- Imperfect alignment or material description: Scale factor $S_{\sigma_t} = 1.37$ calibrated using prompt $D_s + \pi$
- Average decay time resolution : 45 fs

< D > < A > < B > < B > < B</p>

Decay time acceptance

- Selection and trigger require several displaced tracks
 decay time distribution is distorted
- Correction with acceptance function $\epsilon(t)$: derived from MC

nan

SIMULTANEOUS FIT PROJECTIONS

Using $\mathcal{L} = 340 \text{ pb}^{-1}$ of 2011 data, the simultaneous fit gives:

イロト イポト イヨト イヨト

$\Delta m_{\rm s}$: RESULT Using $\mathcal{L} = 340 \,\mathrm{pb}^{-1}$ of 2011 data, asymmetry: $A_{mix}(t) = \frac{N_{unmixed}(t) - N_{mixed}(t)}{N_{unmixed}(t) + N_{mixed}(t)}$

 $\Delta m_{\rm s} = 17.725 \pm 0.041(stat) \pm 0.026(syst) \text{ ps}^{-1}$ $\rightarrow \text{Most precise measurement}$

CDF, 2006: $\Delta m_{\rm s} = 17.77 \pm 0.10(stat) \pm 0.07(syst) \, {\rm ps}^{-1}$

E. Maurice CPPM

 ϕ_s and B_s^0 mixing at LHCb

6 February 2012 17 / 31

arXiv:1112.3183 accepted by PRL LHCb-CONF-2011-049 arXiv:1112.3056 LHCb-CONF-2011-056

E. Maurice CPPM

・ロト・日本・日本・日本・日本・ シック

EXPERIMENTAL STATUS

LHCb:
$$\mathcal{L} = 36 \, \mathrm{pb}^{-1}$$

LHCb-CONF-2011-006

Presentation of ϕ_s measurement at LHCb with $\mathcal{L} = 340 \text{ pb}^{-1}$

イロト イポト イヨト イヨト

nar

$\phi_{\rm s}$ strategy

- 1. Trigger and select $B_s^0 \rightarrow J/\psi(\mu\mu)\phi(KK)$ events
- 2. Measure mass
- 3. Measure decay time : resolution and acceptances
- 4. Measure decay angles, with acceptances
 - ► P→VV decay: mixture of CP odd and CP event states → need angular analysis to disentangle statistically the 3 polarisations amplitudes: $|A_0|^2$, $|A_{\parallel}|^2$ (CP even), $|A_{\perp}|^2$ (CP-odd)
 - S-wave component (*KK* non resonant) add a CP odd polarisation $|A_S|^2$
- 5. Tag initial flavour of B meson
- 6. Unbinned maximum likelihood fit Physical parameters: ϕ_s , $\Delta \Gamma_s$, Γ_s , Δm_s , $M_{B_s^0}$, $|A_{\perp}|$, $|A_{\parallel}|$, $|A_s|$, δ_{\perp} , δ_{\parallel} , δ_s
- 7. Evaluate the systematics

$B^0_s \rightarrow J/\psi \phi$ signal description

- Mass: sum of 2 gaussians
- Time, angle, tagging : sum of ten terms, corresponding to 4 polarization amplitudes and their interferences (S wave included)

$$\frac{d^4 \Gamma(\mathbf{B}_{\mathrm{s}}^0 \to \mathbf{J}/\psi\phi)}{dt \, d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

The time-dependent functions

$$h_k(t) = N_k e^{-\Gamma_S t} \times \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_S t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_S t\right)\right]$$

$$+c_k \underbrace{q(1-2\omega)}_{Tagging} \cos(\Delta m_{\rm s}t) + d_k \underbrace{q(1-2\omega)}_{Tagging} \sin(\Delta m_{\rm s}t)$$

k	$f_k(\theta, \psi, \varphi)$
1	$2 \cos^2 \psi \left(1 - \sin^2 \theta \cos^2 \phi\right)$
2	$\sin^2 \psi \left(1 - \sin^2 \theta \sin^2 \phi\right)$
3	$\sin^2 \psi \sin^2 \theta$
4	$-\sin^2 \psi \sin 2\theta \sin \phi$
5	$\frac{1}{2}\sqrt{2} \sin 2\psi \sin^2 \theta \sin 2\phi$
6	$\frac{1}{2}\sqrt{2} \sin 2\psi \sin 2\theta \cos \phi$
7	$\frac{2}{3}(1 - \sin^2\theta\cos^2\phi)$
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$
9	$\frac{1}{2}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$

k	Nk	a_k	b _k	c_k	d_k
1	$ A_0(0) ^2$	1	$-\cos \phi_s$	0	$\sin\phi_{s}$
2	$ A (0) ^2$	1	$-\cos \phi_s$	0	$\sin\phi_{\rm S}$
3	$ A_{\perp}(0) ^2$	1	$\cos \phi_s$	0	$-\sin\phi_s$
4	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$sin(\delta_{\perp} - \delta_{\parallel})$	$-\cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_s$
5	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$-\cos(\delta_{\parallel} - \delta_0)\cos\phi_s$	0	$\cos(\delta_{\parallel} - \delta_0) \sin \phi_s$
6	$ A_0(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp} - \delta_0)\sin\phi_s$	$sin(\delta_{\perp} - \delta_0)$	$-\cos(\delta_{\perp} - \delta_0)\cos\phi_s$
7	$ A_{s}(0) ^{2}$	1	$\cos \phi_s$	0	$-\sin\phi_s$
8	$ A_{S}(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel} - \delta_S)\sin\phi_s$	$\cos(\delta_{\parallel} - \delta_S)$	$-\sin(\delta_{\parallel} - \delta_S)\cos\phi_s$
9	$ A_{s}(0)A_{\parallel}^{''}(0) $	$sin(\delta_{\perp} - \delta_{S})$	$\sin(\delta - \delta_S)\cos\phi_S$	0	$-\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{S}$
10	$ A_{s}(0)A_{0}(0) $	_0 ~	$-\sin(\delta_0 - \delta_S)\sin\phi_s$	$\cos(\delta_0 - \delta_S)$	$-\sin(\delta_0 - \delta_s)\cos\phi_s$

E. Maurice CPPM

6 February 2012 21 / 31

TRIGGER AND SELECTION

Trigger lines

- Lifetime unbiased
- ► Lifetime biased (~ 14% signal events): cut on impact parameter

Offline selection

- Squared cuts
- ► *t* > 0.3ps

Background

- ▶ Remain only few %
- Large reconstructed decay time: $B \rightarrow J/\psi X$, combinatorial bkg
- Mass description: exponential
- ► Time description: 2 exponentials

 $\begin{array}{c} 8276\pm94\\ \mathrm{B_s^0}\!\rightarrow\mathrm{J}\!/\!\psi\phi \text{ signal events} \end{array}$

イロト イポト イヨト イヨト

nar

PROPER TIME

Time resolution

- Sum of 3 gaussians, with common mean, different widths
- Calibration from prompt J/ψ peak
- Average decay time resolution: 50 fs

Background only

Time acceptance

- ► Reconstruction slightly bias the time distribution: shallow fall at high t → Correction parametrized in MC : 1 + βt
- Selection does NOT bias the time distribution
- Biased trigger: strong drop at small *t* Correction parametrized by comparing the *t* distribution of biased events with unbiased, in data : $\epsilon(t) = \frac{n}{1+(at)^{-c}}$

E. Maurice CPPM

6 February 2012 23 / 31

nar

ANGULAR ACCEPTANCES

 $B_s^0 \rightarrow J/\psi \phi$ is a mixture of CP odd and even states \rightarrow need angular analysis to disentangle statistically the 3 amplitudes

Angular distributions are distorted, mainly by the detector asymmetric shape ($\sim 5\%$ wrt theory)

FIT PROJECTIONS

. CP even P-wave

.. CP odd P-wave

... S-wave

E. Maurice CPPM

 ϕ_s and B_s^0 mixing at LHCb

${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi\phi\,\,{ m Results}$

Likelihood profile in $\phi_{\rm s} - \Delta \Gamma_{\rm s}$ plane

• Most precise measurements: $\Gamma_s = 0.656 \pm 0.009 \text{ (stat)} \pm 0.008 \text{ (syst) ps}^{-1}$ $\phi_s = 0.15 \pm 0.18 \text{ (stat)} \pm 0.07 \text{ (syst) rad}$ $\Delta \Gamma_s = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1}$

- ► First direct evidence of non-zero $\Delta\Gamma_s$
- ► Good agreement with SM predictions → Still room for New Physics

E. Maurice CPPM

$\phi_{\rm s}$: Solving the ambiguity (lhcb-paper-2011-028-001)

2 solutions due to the invariance of the differential decay rate : $(\phi_s, \Delta \Gamma_s, \delta_{\parallel} - \delta_0, \delta_{\perp} - \delta_0, \delta_s - \delta_0) \leftrightarrow (\pi - \phi_s, -\Delta \Gamma_s, \delta_0 - \delta_{\parallel}, \delta_0 - \delta_{\perp}, \delta_0 - \delta_s)$

Ambiguity is solved by studying the interferences between S-wave and P-wave: following BaBar cos 2β measurement (Phys. Rev. D 71 (2007) 032005)

- ▶ P-wave strong phases: $\delta_0, \delta_{\parallel}, \delta_{\perp}$ → P-wave phase increases rapidly as a function of m_{KK} ,
- S-wave strong phase: δ_S

 \rightarrow S-wave phase δ_S vary slowly as a function of m_{KK}

 $\delta_S - \delta_\perp$:

- extracted from a simultaneous fit in 4 intervals of m_{KK}
- expected to decrease as a function of m_{KK} \rightarrow Solution 1 is correct

The chosen solution is the one compatible with SM

イロト イポト イヨト イヨト

nan

ϕ_{s} measurement in $\mathbf{B}^{0}_{s} \rightarrow J\!/\!\psi f_{0}$ (arxiv:1112.3056)

History

- ► 2008: Prediction of S-wave interference in $B_s^0 \rightarrow J/\psi \phi$ decay (arXiv:0812.2832) \rightarrow S-wave could manifest as $f_0(980)$, CP odd eigenstate
- Feb. 2011: 1st observation of $B_s^0 \to J/\psi f_0$ decays at LHCb, then Belle, CDF, D0 $R_{f_0/\phi} = \frac{\Gamma(B_s^0 \to J/\psi f_0)}{\Gamma(B_s^0 \to J/\psi \phi)} = 0.252^{+0.046+0.027}_{-0.032-0.033}$, (arXiv.1102.0206)

Analysis

- f_0 is a spin-0 resonance \rightarrow no angular analysis
- ► Signal time function is simpler $S(t, q) = e^{-\Gamma_{S}t} (\cosh \frac{\Delta \Gamma_{S}t}{2} + \cos \phi_{S} \sinh \frac{\Delta \Gamma_{S}t}{2} - qD \sin \phi_{S} \sin(\Delta m_{S}t))$
- ► In $\mathcal{L} = 378 \text{ pb}^{-1}$ (2010 + 2011 data), 1428±47 signal events

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Constraining $\Delta\Gamma_s$ and Γ_s to $B_s^0 \rightarrow J/\psi\phi$ values : $\phi_s = -0.44 \pm 0.44$ (stat) ± 0.02 (syst) rad

E. Maurice CPPM

nan

$\phi_s \text{: Combination of } B^0_s \! \to J \! / \! \psi \phi \; \text{ and } B^0_s \! \to J \! / \! \psi f_0$

Combination of the 2 ϕ_s measurement using a simultaneous unbinned maximum likelihood fit with common ϕ_s , Γ_s , $\Delta \Gamma_s$, Δm_s :

 $\phi_{\mathrm{s}} = 0.03 \pm 0.16 \mathrm{(stat)} \pm 0.07 \mathrm{(syst)}$ rad

Main systematics come from:

- Decay angle acceptance
- CP in mixing and decay
- Background modelling

E. Maurice CPPM

 ϕ_s and B_s^0 mixing at LHCb

CONCLUSIONS AND PROSPECTS

2011 has been an excellent year for LHCb

► Most precise measurement : $\Delta m_{\rm s} = 17.725 \pm 0.041 \pm 0.026 \text{ ps}^{-1}$ $\Delta \Gamma_{\rm s} = 0.123 \pm 0.029 \text{ (stat)} \pm 0.011 \text{ (syst) ps}^{-1}$ $\phi_{\rm s} = 0.03 \pm 0.16 \text{ (stat)} \pm 0.07 \text{ (syst) rad}$ \rightarrow Compatible with Standard Model but still room for New Physics

Prospects on ϕ_s : short term

- Use the whole 2011 statistics (1 fb⁻¹) \rightarrow Expected $\sigma_{\phi_s} = 0.10$ rad for $B_s^0 \rightarrow J/\psi \phi$ only
- Add tagging information: SS kaon
- ► Add new channels:
 - ► $B_s^0 \rightarrow J/\psi \pi \pi$
 - ► $B_s^0 \rightarrow \psi(2S)\phi$
 - Control penguin pollution with $B_s^0 \rightarrow J/\psi K^{*0}$

nar

Prospects on $\phi_{\rm s}$

$\phi_{\rm s}\,$ statistical sensitivities at LHCb:

- Current ($\mathcal{L} = 340 \text{pb}^{-1}$) : 0.16 rad
- Expected with $\mathcal{L} = 2 f b^{-1}$ (2012): 0.05 rad
- Expected with $\mathcal{L} = 5 \text{fb}^{-1}$ (2017): 0.03 rad
- ϕ_s statistical sensitivity at SuperLHCb ($\sqrt{s} = 14$ TeV):
 - Expected with $\mathcal{L} = 50 \text{fb}^{-1}$: 0.006 rad (LOI: CERN-LHCC-2011-001)

 \rightarrow Precision measurement \sim SM ($\sigma(\phi_s) = 0.003$ rad)

$\phi_{\rm s}\,$ measurement gets in excited times !

イロト イポト イヨト イヨト

BACK UP

$\Delta m_{\rm s}$: Background description

2 kinds of backgrounds

- Physical : B_d^0 and λ_b decays with 1 misidentified daughter
 - $\mathcal{B}_{physical}(m)$: single gaussian
 - $\mathcal{B}_{physical}(t)$: same way as signal ($\Delta \Gamma = 0, \tau$ fixed to PDG value)

Combinatorial

- ► $\mathcal{B}_{comb}(m)$: exponential (different parameters for 3 decays)
- $\mathcal{B}_{comb}(t)$: shape is extraced from high mass side bands

DQ P

イロト イポト イヨト イヨト

$\Delta m_{\rm s}$: Per event variable

In the fit, 2 per event variables are used: σ_t , and η \rightarrow Need to use σ_t and η separate pdf for signal and bkg

For instance: η distribution for signal (left), bkg (right)

nar

$\Delta m_{\rm s}$: systematic studies

Systematic	$\Delta_{\Delta m_{\rm s}} ({\rm ps}^{-1})$
Acceptance function	0.000
Resolution	0.001
z-scale	0.018
momentum scale	0.018
σ_t and η PDFs	0.000
$\Delta\Gamma_{ m s}$	0.002
Resolution model	0.001
Mass model	0.003
Total	0.026

Details:

- Resolution: vary S_{σ_t} in [1.25, 1.45]
- ► Scale: may improve with better alignment
- ► Evt by Evt pdf: ignore these PDFs
- ► Resolution: use double Gaussian for proper time resolution
- ► Mass shape: use 2 crytal ball

E. Maurice CPPM

$\phi_{\rm s}$: results

PARAMETER	VALUE	$\sigma_{ ext{stat.}}$	$\sigma_{ m syst.}$
$\Gamma_s [PS^{-1}]$	0.657	0.009	0.008
$\Delta \Gamma_s [\mathrm{PS}^{-1}]$	0.123	0.029	0.011
$ A_{\perp}(0) ^2$	0.237	0.015	0.012
$ A_0(0) ^2$	0.497	0.013	0.030
$ A_{\rm S}(0) ^2$	0.042	0.015	0.018
δ_{\perp} [rad]	2.95	0.37	0.12
$\delta_{ m S}$ [rad]	2.98	0.36	0.12
$\phi_{ m s}[m RAD]$	0.15	0.18	0.06

$\phi_{\rm s}, \Delta\Gamma_{\rm s}$: systematic studies

Details:

- ► Angular acceptances: significant data/MC differences affect angular acceptance → toy studies with reweighted MC to estimate effect
- ► CPV in mixing and decay: no production/tagging/direct CPV asymmetry included in the fit so far (toy experiment to estimate effect of neglecting up to 10% nuisance asymmetry)

DQ P

 $\phi_{s} \colon \mathbf{B}_{s}^{0} \to \mathbf{J}/\psi \mathbf{f}_{0}$

Signal:

Mass: Sum of 2 gaussians

Background:

- ► Misidentified $B^0 \rightarrow J/\psi K^{*0}$
- $\blacktriangleright \ {\rm B_d^0} \rightarrow {\rm J}/\psi \pi^+\pi^-$
- Combinatorial

Angles consideration :

- ► B_s^0 spin: 0
- ► J/ ψ spin: 1
- f_0 spin: 0

CP odd

イロト イポト イヨト イヨト

nar

OPTIMISATION, CALIBRATION OF OS TAGGING

1. Selection of the taggers

Optimization of the cuts to maximize the tagging power, in $B^+ \rightarrow J/\psi K^+$ channel Performances are checked in $B^0 \rightarrow J/\psi K^{*0}$, $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$ channels

2. Combination of the taggers decision:

 \rightarrow Calculation to obtain the OS single tagging decision

 \rightarrow Neural Network to obtain the OS mistag probability η

Trained on MC $B^+ \to J\!/\!\psi K^+,$ based on topological and kinematic event properties

3. Calibration of mistag probability (η) wrt measured mistag fraction (ω) Correction function: $\omega = p_0 + p_1(\eta - \langle \eta \rangle)$ extracted from $B^+ \rightarrow J/\psi K^+$ If calculated mistag is well calibrated: $p_0 - p_1 < \eta >= 0$

Check in $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$, $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$

Channels	p_0	p_1	$<\eta_c>$
$B^+ \rightarrow J/\psi K^+$	0.384 ± 0.003	1.037 ± 0.038	0.379
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^{st 0}$	0.399 ± 0.008	1.02 ± 0.10	0.378
$B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$	0.395 ± 0.002	1.022 ± 0.026	0.375

$\phi_{\rm s}$: Flavour tagging

OS per event mistag probability with calibration parameters from $B^+ \rightarrow J/\psi K^+$ $\omega = p_0 + p_1(\eta - \langle \eta \rangle)$

Tagging power: $\varepsilon_{\text{tag}} D^2 = 2.08 \pm 0.17(\text{stat}) \pm 0.37(\text{syst}) \%$

E. Maurice CPPM

DQ P

S wave

LHCb and D0 disagree on fraction of S-wave CDF measures < 6.7% at 95% CL

E.	Maurice	CPPM

PENGUIN POLLUTION

• In the SM, $B_s \rightarrow J/\psi \phi$ decay is dominated by a single weak phase: $V_{cs}V_{cb}^*$

- Various penguin pollution estimates:
 - δP~10⁴ [H. Boos et al., Phys.Rev. D70 (2004) 036006]
 - δP~10³ [M. Gronau et al., arXiv:0812.4796]
 - δP up to ~0.1 [S. Faller et al., arXiv:0810.4248v1]

A (1) < (2) </p>

nan

PENGUIN POLLUTION (2)

 $\bar{b} \to \bar{s}c\bar{c}$

Penguins suppressed by λ^2

$$A(B_s^0 \to (J/\psi\phi)_f) = \left(1 - \frac{\lambda^2}{2}\right) \mathcal{A}_f \left[1 + \epsilon a_f e^{i\theta_f} e^{i\gamma}\right] \qquad \epsilon \equiv \lambda^2 / (1 - \lambda^2)$$

 $\bar{b}\to \bar{d}c\bar{c}$

Penguins NOT suppressed wrt tree

$$A(B^0_{\text{E-Maurice}} \to (J/\psi \bar{K}^{*0}) = \lambda A'_{, \epsilon} \left| 1 - \frac{1}{\phi_s} a'_{, \epsilon} e^{i\theta'_f} e^{i\gamma} \right|$$

E. Maurice Φ_{PPM} (mixing at LHCb

∽ Q (~
 6 February 2012
 43 / 31

PENGUIN POLLUTION: LHCB

$$BR(B_s^0 \rightarrow J/\psi K^{*0}) = (3.5^{+1.1}_{-1.0}(\text{stat}) \pm 0.9(\text{syst})) \ 10^{-5}$$

E. Maurice CPPM

6 February 2012 44 / 31

A_{SL}

Measuring A_{SL} is hard at LHCb because:

- ▶ proton-proton machine → production asymmetries
- ► LHCb → asymmetric detector → cannot count like-sign muons when one of them is not in LHCb acceptance

LHCb has 2 independant analyses :

- Time integrated A_{SL} in B⁰_s → D_sXμ⁺ν_μ Production asymmetry is washed out by fast B⁰_s·B⁰_s mixing Fewer parameters to constrain
- ► Time dependent subtraction $\Delta A_{fs}^{s,d} = A_{fs}^s - A_{fs}^d$ $B_s^0 \rightarrow D_s X \mu^+ \nu_\mu$ and $B_d^0 \rightarrow D_s X \mu^+ \nu_\mu$ channels Production asymmetries cancel out Fewer systematics Cancellation of cross-feed backgrounds

Results are expected soon

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

DQ P

FLAVOUR-SPECIFIC ASYMMETRY IN B_s^0 , B_d^0 decays

► Physical asymmetry :

$$a_{\mathrm{fs}}^{s} = \frac{\Delta\Gamma_{\mathrm{s}}}{\Delta m_{\mathrm{s}}} \tan(\phi_{\mathrm{s}})$$

• Measured asymmetry :

$$A_{fs}^{q} = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$
$$A_{fs}^{q} = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - (\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2})\frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2}\left(\frac{B}{S}\right)^{q} \qquad q=s,b$$

- In LHCb, polluting symmetries are much larger than a_{fs} :
 - Detector asymmetry $\delta_c^q \sim 10^{-2}$
 - Matter detector \rightarrow hadronic interaction asymmetric
 - At LHCb: reduced by swapping the magnetic field
 - Production asymmetry $\delta_p^q \sim 10^{-2}$
 - ► LHC is a proton-proton collider
 - Background asymmetry $\delta_b^q \sim 10^{-3}$
 - Calculated using sidebands

DQ P