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Direct CP Violation in Charm:

Recent Results

Short Outline

Data news: evidence for direct CPV in charm

Interpretation:

New physics?

☑

☑

●

Or a hardly calculable SM contribution?●



  

First Things First:
Data!



  

Araw(D
0 →K +K -)−Araw(D

0 →π+π-)

3.5σ away from the hypothesis of 
CP conservation

Based on 620/pb of analyzed data. 
LHCb has now almost 2x on tape

●

●

≃ ACP
dir (D0 →K +K -)−ACP

dir (D0 →π+π-)

CDF (1111.5023) measures separately  
A

CP
 (D0 → K+ K­)  and  A

CP
 (D0 → π+ π­) , reporting 

☑

Consistent with CP conservation

Based on 5.9/fb of analyzed data.

●

●

ACP(D
0→K +K -) = (−0.24±0.22±0.09)%

ACP(D
0→π+π -) = (+0.22±0.24±0.11)%

Most precise single-exp determinations●

= (−0.82±0.21±0.11)%

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:☑
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Note that  3  asymmetries appear in the above discussion:☞

     :  it is the experimental asymmetry.●
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Generally  A
raw

 = {instrumental CP asymmet ry} + {physics CP asymmetry}

The instrumental asymmetry is 
due to the detector response 
not being fully CP symmetric.

It needs to be subtracted away
in order to isolate the physics 
CP asymmetry.

Araw



  

.

.

Araw(D
0 →K +K -)−Araw(D

0 →π+π-)

3.5σ away from the hypothesis of 
CP conservation

Based on 620/pb of analyzed data. 
LHCb has now almost 2x on tape

●

●

≃ ACP
dir (D0 →K +K -)−ACP

dir (D0 →π+π-)

CDF (1111.5023) measures separately  
A

CP
 (D0 → K+ K­)  and  A

CP
 (D0 → π+ π­) , reporting 

☑

Consistent with CP conservation

Based on 5.9/fb of analyzed data.

●

●

ACP(D
0→K +K -) = (−0.24±0.22±0.09)%

ACP(D
0→π+π -) = (+0.22±0.24±0.11)%

Most precise single-exp determinations●

= (−0.82±0.21±0.11)%

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:☑

Note that  3  asymmetries appear in the above discussion:☞

     :  it is the experimental asymmetry.●

D. Guadagnoli, Direct CPV in Charm

Generally  A
raw

 = {instrumental CP asymmet ry} + {physics CP asymmetry}

The instrumental asymmetry is 
due to the detector response 
not being fully CP symmetric.

It needs to be subtracted away
in order to isolate the physics 
CP asymmetry.

Araw

     =  {physics CP asymmetry}●

= {asymmetry from indirect CPV}  +   {asymmetry from direct CPV}

ACP



  

.

.

Araw(D
0 →K +K -)−Araw(D

0 →π+π-)

3.5σ away from the hypothesis of 
CP conservation

Based on 620/pb of analyzed data. 
LHCb has now almost 2x on tape

●

●

≃ ACP
dir (D0 →K +K -)−ACP

dir (D0 →π+π-)

CDF (1111.5023) measures separately  
A

CP
 (D0 → K+ K­)  and  A

CP
 (D0 → π+ π­) , reporting 

☑

Consistent with CP conservation

Based on 5.9/fb of analyzed data.

●

●

ACP(D
0→K +K -) = (−0.24±0.22±0.09)%

ACP(D
0→π+π -) = (+0.22±0.24±0.11)%

Most precise single-exp determinations●

= (−0.82±0.21±0.11)%

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:☑

Note that  3  asymmetries appear in the above discussion:☞

     :  it is the experimental asymmetry.●

D. Guadagnoli, Direct CPV in Charm

Generally  A
raw

 = {instrumental CP asymmet ry} + {physics CP asymmetry}

The instrumental asymmetry is 
due to the detector response 
not being fully CP symmetric.

It needs to be subtracted away
in order to isolate the physics 
CP asymmetry.

Araw

     =  {physics CP asymmetry}●

= {asymmetry from indirect CPV}  +   {asymmetry from direct CPV}

ACP

     =  {asymmetry from direct CPV}● ACP
dir This is the actual 

quantity of interest
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☑ For each final state f, the quantity A
raw

  is defined as:

Araw(D
0 → f ) =

N obs (D
0→ f )−N obs(D̄

0→ f )

N obs (D
0→ f )+N obs(D̄

0→ f )
Sum over all t (hence “time-integrated” asymmetry)

To get this number:

Identify a decay event, occurring at time t, of a 
neutral D meson, tagged at t = 0 (prod'n) to be a D0

●

●

More on the various asymmetries
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➋

“Physical”
CPV

small

More on the various asymmetries



  

Therefore the LHCb measurement is the first evidence 
of direct CPV in the charm sector.
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☑ For each final state f, the quantity A
raw

  is defined as:
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0 → f ) =

N obs (D
0→ f )−N obs(D̄

0→ f )

N obs (D
0→ f )+N obs(D̄

0→ f )
Sum over all t (hence “time-integrated” asymmetry)

any detector effect not perfectly CP symmetric

Each A
raw

 receives contributions from:

any difference in (D0 → f) vs. (D0 → f) Direct CPV
(indicated by Adir
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)
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●

●

☞

Instrumental

➊

➋

➌

“Physical”
CPV

small

cancels in the difference 
A

raw
(D0→K+ K–) – A

raw
(D0→π+π–),

measured by LHCb

More on the various asymmetries
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As mentioned, A
CP

 from CDF includes direct and indirect 
CPV contributions.



In the limit of equal decay-time acceptance between
the KK and  modes, the indirect CPV contribution 
cancels in the difference, also measured by LHCb.
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From CDF: 1111.5023

CDF quotes:
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Theory
Implications



  

CP violation in decay occurs when the decay rate  M → f  differs from the decay rate 
involving the CP-conjugate states.

Direct CPV and Direct CP Asymmetries

Since  decay width  | amplitude |2, for this to occur, the amplitude needs consist of at least two terms, 
with a relative (hence convention-independent) weak (hence CP-odd) phase.

●

●
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i (δ f+ϕ f ))

Leading amplitude: its phase is taken to be zero

Sub-leading amplitude: 
it comes with a relative weak (ϕ

f
) and strong (δ

f
) phase

CPV in the decay D → f can be quantified by the direct CP asymmetry, defined as:

ACP
dir (D→ f ) =

∣A f∣
2−∣Ā f̄∣

2

∣A f∣
2+∣Ā f̄∣

2
where f = f  because K+ K‒  or  +‒ are 
CP eigenstates.

●

●

●

D. Guadagnoli, Direct CPV in Charm



  

CP violation in decay occurs when the decay rate  M → f  differs from the decay rate 
involving the CP-conjugate states.

Direct CPV and Direct CP Asymmetries

Since  decay width  | amplitude |2, for this to occur, the amplitude needs consist of at least two terms, 
with a relative (hence convention-independent) weak (hence CP-odd) phase.

So let's consider the amplitude for D → f, where f = K+ K‒  or  +‒. 
It can be expanded into a leading + a sub-leading term as follows:

A f = A f
T (1 + r f e

i (δ f+ϕ f ))

Leading amplitude: its phase is taken to be zero

Sub-leading amplitude: 
it comes with a relative weak (ϕ

f
) and strong (δ

f
) phase

CPV in the decay D → f can be quantified by the direct CP asymmetry, defined as:

ACP
dir (D→ f ) =

∣A f∣
2−∣Ā f̄∣

2

∣A f∣
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where f = f  because K+ K‒  or  +‒ are 
CP eigenstates.

To leading order in r
f
 ≪ 1, one gets:

ACP
dir (D→ f ) ≃ −2 r f sinδ f sinϕ f

●

●

●

For large phases, the asymmetry goes down 
as the magnitude of the sub-leading / leading 
amplitude ratio.
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Let us take the D → K+ K‒ decay.  At the level of dim-6 operators, one can write down a tree (W-emission) amplitude, 
as well as a loop (“penguin”) one.

aKK
T ∼ V cs

* V us T KK

☞

c

ū

V cs
*

V us

u

s̄

s

ū

aKK
T : tree

D0

K +

K -

Amplitude ratio: heuristic estimate
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
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ū
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*

V us

u
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s
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aKK
T : tree

aKK
P : penguin

c

ū

s

ū

u

s̄
qd

=b, s, d

D0

D0

K +

K -

K +

K -
V c qd

*

V u qd

Amplitude ratio: heuristic estimate

D. Guadagnoli, Direct CPV in Charm



  

Hence Singly 

Cabibbo-Suppressed

(SCS) decays

Let us take the D → K+ K‒ decay.  At the level of dim-6 operators, one can write down a tree (W-emission) amplitude, 
as well as a loop (“penguin”) one.

AKK = aKK
T + aKK

P = V cs
* V us (T KK+PKKs −PKK

d ) + V cb
* V ub (PKKb −PKK

d )

aKK
T ∼ V cs

* V us T KK

1 ⋅ λC

aKK
P ∼ V cb

* V ub PKK
b + V cs

* V us PKK
s + V cd

* V ud PKK
d

λC
2 ⋅ λC

3 1 ⋅ λC λC ⋅ 1

AKK
T

☞


c

ū
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Amplitude ratio: heuristic estimate

Using unitarity on the last term of the penguin amplitude, it follows:●

AKK
P
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Using unitarity on the last term of the penguin amplitude, it follows:●

AKK
P

Hence the amplitude ratio estimate:
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☞



  

Now let us go back to the formula●

ACP
dir (D→ f ) ≃ −2 r f sin δ f sinϕ f

Recall that:●

The strong phase is expected to be large:  sin  = O(1)➊

with  f = K+ K‒  or  +‒

The weak phase is minus  ≃ 67°:  sin γ = O(1)➋
In the U-spin symmetric limit (s ↔ d quarks), the only difference between the KK and the 
 amplitudes is the sign of the tree-level contribution. Hence: 

➌

rπ+ π- ≃ −rK + K -

 A
CP

 :  heuristic estimate

D. Guadagnoli, Direct CPV in Charm
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Namely this (heuristic) estimate returns a figure about 
one order of magnitude below LHCb's measurement
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Two main questions arise:

Can this estimate be missing the actual SM order of magnitude? What enhancements are possible?(a)

How plausibly can non-SM physics explain this signal?(b)

Namely this (heuristic) estimate returns a figure about 
one order of magnitude below LHCb's measurement



  

Observation:

First: An old observation to keep in mind

The CKM structure responsible for large CPV in the |ΔC| = 1 Hamiltonian ( V
cb

  V
ub

  ) multiplies certain
operators ( transforming as triplets under SU(3)

flavor
 ) whose matrix elements may be enhanced  

with respect to naïve expectations.

This resembles the “ΔI = ½ rule” in K → π π  matrix elements, at work in ϵ'/ϵ

☑
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 This observation warrants further investigation:

on the Lattice QCD side: estimate of the triplet operators' matrix elements

D. Guadagnoli, Direct CPV in Charm

on the side of the assumptions specific to the Golden-Grinstein analysis.
Let's look closer at this issue

●

●
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Amplitudes' formula☑
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For the decays of interest to us, they arrive 
at the following amplitudes:

A(D0 → K+ K–)   =    a Σ  + b Δ

A(D0 → π+ π–)   =   –a Σ  + b Δ

a, b =  operator matrix elements

approx. real

small in magnitude,
but with large phase

with:

Δ = (V cs
* V us+V cd

* V ud )/2
Σ = (V cs

* V us−V cd
* V ud )/2 


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Matrix elements from the lowest-dim irreps 
(= operator triplets) enter only in b, not in a

Such matrix elements may well be enhanced 
with respect to naïve expectations, in analogy 
with the neutral-K case ( I = ½ rule).

Conclusion☑

Since  has a large phase, 
and if b is indeed enhanced
(say 10x)

A
CP

  may be large enough to be observable.
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CP
  = O(10-3)
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Problem

Since  |Σ| / |Δ|  ~ 3000, the above amplitudes would predict  Γ(D0 → K+ K–) ≃ Γ(D0 → π+π–).

On the other hand, experimentally, one finds:  Γ(D0 → K+ K–) ≃ 2.8·Γ(D0 → π+π–)
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 – breaking corrections
affect only the term proportional 
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 – breaking terms, 

the Golden-Grinstein amplitudes are modified as follows:
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Expected solution: SU(3)
flavor

 – breaking effects may well be large,
   and need be incorporated in the above analysis

Pirtskhalava-Uttayarat  follow-up (1112.5451):

Inclusion of the leading SU(3)
flavor

 – breaking effects into the Golden-Grinstein analysis

Note that:

SU(3)
flavor

 – breaking corrections
affect only the term proportional 
to the CKM structure with large 
magnitude, Σ.

.
A(D0 → K+ K–)   =    (a + c) Σ  + b Δ

A(D0 → π+ π–)   =   (–a + c) Σ  + b Δ

Therefore:

Inclusion of these corrections can therefore explain the widths' discrepancy, 
without spoiling Golden-Grinstein's argument on A

CP
 



  

Selected Theory Work
after LHCb results

(Apologies for the not represented work)



  

Here's where
the quickest gun rules



  

(Instant) paper 1:
            SM

Main observation to get to their point:  

there are further topologies, formally  1/m
c
 suppressed, but in practice known to be sizable.

Besides the tree amplitude seen before, namely:                                     (“W-emission” topology)

For example, topologies known as “W-exchange annihilation”.

D. Guadagnoli, Direct CPV in Charm

Grossman, Kagan, Nir
hep-ph/0609178

☞

“On the size of direct CPV in Singly Cabibbo-Suppressed decays”
 Brod, Kagan, Zupan (1111.5000)
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Besides the tree amplitude seen before, namely:                                     (“W-emission” topology)

For example, topologies known as “W-exchange annihilation”.

What does sizable mean in practice? Example.☑
The BR(D0 → K0 K0) vanishes to leading power. Its amplitude receives 
two sub-leading contributions from W-exchange annihilation.

= V cs
* V us EKK

s + V cd
* V ud E KK

d
+

K̄ 0

K 0

V cs
*

V us

c

D0 diagram
with s  ↔  d{ }

≃ λC (E KK
s − EKK

d )


ū

s

d̄

d

s̄
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

Data  (PDG)

BR(D0 → K0 K0) = 0.69(12) × 10-3      vs.     BR(D0 → K+ K­) = 3.96(8) × 10-3

Ampl (D0→K 0 K̄ 0)
Ampl (D0→K +K -)

∼ √ 0.69
3.96

≃ 0.4

This suggests that:

the W-exchange amplitude is about
½ of the W-emission one

the SU(3) symmetry may not 
be working so well here

☑

☑

(hence not so suppressed)

ū

s

d̄

d

s̄

☑
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Brod, Kagan, Zupan: continued

The previous observations can be made more quantitative, and used to give an estimate of:

Results☑

➊ The (formally) leading-power penguin amplitudes

The (formally) power-suppressed annihilation amplitudes➋

for the D → K+ K‒  and D → + ‒  decays

D. Guadagnoli, Direct CPV in Charm



  

Brod, Kagan, Zupan: continued

The previous observations can be made more quantitative, and used to give an estimate of:

Use of:

the ΔC = 1 effective Hamiltonian at NLO within the SM

“naïve” factorization + O(α
s
) corrections

●

●

Including renorm. scale variation, they get:

rK +K - ≈ (0.01−0.02)%

rπ+ π- ≈ (0.015−0.028)%

consistent with the heuristic estimate seen before

Results☑

➊ The (formally) leading-power penguin amplitudes

The (formally) power-suppressed annihilation amplitudes➋

for the D → K+ K‒  and D → + ‒  decays

➊ The (formally) leading-power penguin amplitudes
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Results☑
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The (formally) power-suppressed annihilation amplitudes➋

for the D → K+ K‒  and D → + ‒  decays

➊ The (formally) leading-power penguin amplitudes
☞

D. Guadagnoli, Direct CPV in Charm

It is well known that the charm mass is too light for factorization theorems to hold 
(and much too heavy for chiral symmetry).
Therefore, the 1/m

c
 expansion and factorization are, here and below, mostly used as guidance.

The corresponding results require of course plenty of assumptions (e.g. on the matrix elements).
Results should be taken with relative errors of O(1).

Beware:

☑

☑
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Estimate of:

Annihilation topologies with insertions 
of QCD penguins. Example:

☞
The (formally) power-suppressed amplitudes➋

Brod, Kagan, Zupan: continued

(a)

D. Guadagnoli, Direct CPV in Charm

penguins
here
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Conclusions☑

∣Each of the above amplitudes
Leading-power amplitude ∣ ∼ (0.02÷0.08)%

A
CP

(single ampl.)  ~ few x 0.1 % 

A contribution to A
CP  from each of these

amplitudes of:

It follows that  the LHCb measurement can plausibly be saturated by the SM contributions
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Conclusions☑

∣Each of the above amplitudes
Leading-power amplitude ∣ ∼ (0.02÷0.08)%

A
CP

(single ampl.)  ~ few x 0.1 % 

A contribution to A
CP  from each of these

amplitudes of:

The whole approach is testable in two ways:

Similarly large SM effects should be visible in D+ → K+ K0 and in D
s
+ → + K0,  that differ from the K+K­ 

The modes D+ → π+ π0 and D
s
+ → K+ π0  are not polluted by QCD penguins, hence

It follows that  the LHCb measurement can plausibly be saturated by the SM contributions

penguins
here

current-
current

here

➊

and π+ π­ decays only in the spectator quark 

they are suited for non-SM searches

➋
●

●



  

(Instant) paper 2:
mostly beyond SM

Main idea☑
Write down the most general |ΔC| = 1 effective Hamiltonian (including non-SM operators).

Address the question of what operators may plausibly generate the LHCb signal, 

taking into account the relevant constraints (D0 – D0  mixing  and  ϵ'/ϵ)

D. Guadagnoli, Direct CPV in Charm

“Implications of the LHCb Evidence for Charm CPV”
 Isidori, Kamenik, Ligeti, Perez (1111.4987)
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Parameterizing non-SM contributions☑
Recall again the direct CP asymmetry formula for the channel D → f, where f = K+ K‒  or  +‒ :

ACP
dir (D→ f ) = −2 r f sinϕ f sin δ f

magnitude of the 
sub-leading to leading 

amplitudes ratio

sub-leading to leading
relative CP-odd phase

sub-leading to leading
relative strong phase
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(Instant) paper 2:
mostly beyond SM

Main idea☑
Write down the most general |ΔC| = 1 effective Hamiltonian (including non-SM operators).

Address the question of what operators may plausibly generate the LHCb signal, 

taking into account the relevant constraints (D0 – D0  mixing  and  ϵ'/ϵ)

Parameterizing non-SM contributions☑
Recall again the direct CP asymmetry formula for the channel D → f, where f = K+ K‒  or  +‒ :

ACP
dir (D→ f ) = −2 r f sinϕ f sin δ f

This formula can be generalized to include the case of contributions from non-SM operators:

magnitude of the 
sub-leading to leading 

amplitudes ratio

sub-leading to leading
relative CP-odd phase

sub-leading to leading
relative strong phase

ACP
dir (D→ f ) = 2[ξ f Im (R f

SM ) + 1
λC ∑i

Im (C i
NP) Im (R f ,i

NP )]
ratio of 

CKM factors ratio between 
hadronic amplitudes

non-SM Wilson coefficients
(normalized to the tree amplitude 

CKM suppression)

D. Guadagnoli, Direct CPV in Charm

Here “ratio” means
between the sub-leading
and the leading amplitude

“Implications of the LHCb Evidence for Charm CPV”
 Isidori, Kamenik, Ligeti, Perez (1111.4987)
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Isidori et al.: continued

Constraint equation☑
The previous relation, written down explicitly for the K+K­ and π+π­ decays, 

and after use of the ΔA
CP

 measurement, leads to the following equation:

Im (CNDA)
(10 TeV)2

ΛNDA
2 =

(0.61±0.17)−0.12 Im (Δ RSM)
Im (Δ RNP)

hadronic amplitudes 
ratio for the difference 
between the K+K­ and 
π+π­ channels

D. Guadagnoli, Direct CPV in Charm

New world average (HFAG) for ΔA
CP

 = –(0.65 ± 0.18)%

(rescaled by a numerical factor)
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D. Guadagnoli, Direct CPV in Charm



  

.
.

Isidori et al.: continued

Constraint equation☑
The previous relation, written down explicitly for the K+K­ and π+π­ decays, 

and after use of the ΔA
CP

 measurement, leads to the following equation:

Im (CNDA)
(10 TeV)2

ΛNDA
2 =

(0.61±0.17)−0.12 Im (Δ RSM)
Im (Δ RNP)

hadronic amplitudes 
ratio for the difference 
between the K+K­ and 
π+π­ channels

New world average (HFAG) for ΔA
CP

 = –(0.65 ± 0.18)%

(rescaled by a numerical factor)

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:

C NP = CNP G FΛNDA
2

√2
√2

G FΛNDA
2

Defines C
NDA

It is naturally of O(1) if 
NDA

 is the Fermi scale

Note

D. Guadagnoli, Direct CPV in Charm



  

.
.

Isidori et al.: continued

Constraint equation☑
The previous relation, written down explicitly for the K+K­ and π+π­ decays, 

and after use of the ΔA
CP

 measurement, leads to the following equation:

Im (CNDA)
(10 TeV)2

ΛNDA
2 =

(0.61±0.17)−0.12 Im (Δ RSM)
Im (Δ RNP)

hadronic amplitudes 
ratio for the difference 
between the K+K­ and 
π+π­ channels

New world average (HFAG) for ΔA
CP

 = –(0.65 ± 0.18)%

(rescaled by a numerical factor)

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:
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2

√2
√2

G FΛNDA
2

Defines C
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It is naturally of O(1) if 
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 is the Fermi scale

It follows that:

If  { Im ΔRNP ~ 1,  |ΔRSM|  negligible;  C
NDA
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NDA

 ~ 13 TeV

Note

☞
⇒
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C NP = CNP G FΛNDA
2

√2
√2

G FΛNDA
2

Defines C
NDA

It is naturally of O(1) if 
NDA

 is the Fermi scale

It follows that:

If  { Im ΔRNP ~ 1,  |ΔRSM|  negligible;  C
NDA

 ~ 1 }  ●

●

Λ
NDA

 ~ 13 TeV

If instead { Λ
NDA

 ~ Fermi scale }  Im C
NDA

 ~ 7 · 10­4

These bounds hold before including any other constraint, in particular from D0 – D0  mixing  and  ϵ'/ϵ

Note

☞
⇒
⇒
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Isidori et al.: continued

Full analysis☑
Write down the most general |ΔC| = 1 effective Hamiltonian for non-SM contributions:(a)

Include constraints from D0 – D0  mixing  and  ϵ'/ϵ(b)

H ∣ΔC∣=1
eff, NP

(b)
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(b)

The double insertion                                                generates an effective |ΔC| = 2 Hamiltonian.
It is constrained by  D0 – D0  mixing
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Isidori et al.: continued

Full analysis☑
Write down the most general |ΔC| = 1 effective Hamiltonian for non-SM contributions:(a)

Include constraints from D0 – D0  mixing  and  ϵ'/ϵ(b)

H ∣ΔC∣=1
eff, NP

(b1)

(b)

The double insertion                                                generates an effective |ΔC| = 2 Hamiltonian.
It is constrained by  D0 – D0  mixing

(b2) It likewise generates an effective |ΔC| = 0  but  |ΔS| = 1 Hamiltonian,  constrained by  ϵ'/ϵ

Conclusions

Operators where the bilinear containing the charm quark is of  V – A  structure are severely constrained 
by D0 – D0 mixing and  ϵ'/ϵ.

●

● In cases where non-SM contributions are allowed to be large, one expects correspondingly large 
contributions to CPV in D0 – D0 mixing and/or  ϵ'/ϵ.

T {H ∣ΔC∣=1
eff, NP (x ) H ∣Δ F∣=1

eff, SM (0)}
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Full analysis☑
Write down the most general |ΔC| = 1 effective Hamiltonian for non-SM contributions:(a)

Include constraints from D0 – D0  mixing  and  ϵ'/ϵ(b)

H ∣ΔC∣=1
eff, NP

(b1)

(b)

The double insertion                                                generates an effective |ΔC| = 2 Hamiltonian.
It is constrained by  D0 – D0  mixing

(b2) It likewise generates an effective |ΔC| = 0  but  |ΔS| = 1 Hamiltonian,  constrained by  ϵ'/ϵ

Conclusions

Operators where the bilinear containing the charm quark is of  V – A  structure are severely constrained 
by D0 – D0 mixing and  ϵ'/ϵ.

●

● In cases where non-SM contributions are allowed to be large, one expects correspondingly large 
contributions to CPV in D0 – D0 mixing and/or  ϵ'/ϵ.

T {H ∣ΔC∣=1
eff, NP (x ) H ∣Δ F∣=1

eff, SM (0)}

D. Guadagnoli, Direct CPV in Charm

Chromo-magnetic operators (at variance with 4-fermion ones) do actually largely circumvent 
this statement.

However

See the recent paper by Giudice, Isidori and Paradisi for a detailed account of this possibility



  

Outlook: we need more data and more theory work

Data 1☑
LHCb update on ΔA

CP
 with full 2011 dataset

D. Guadagnoli, Direct CPV in Charm
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Theory☑
More into the question: can this be sheer SM?

Classification of other decay modes where similar enhancements would be expected.

Can Lattice QCD help here?
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Theory☑
More into the question: can this be sheer SM?

Classification of other decay modes where similar enhancements would be expected.

And into the other question: may this be beyond SM?

Classification of the “cleanest” modes, e.g. those that are less polluted by QCD penguins

Can Lattice QCD help here?



  

Outlook: we need more data and more theory work

Data 1☑
LHCb update on ΔA

CP
 with full 2011 dataset

D. Guadagnoli, Direct CPV in Charm

Theory☑
More into the question: can this be sheer SM?

Classification of other decay modes where similar enhancements would be expected.

Data 2☑
Data on these modes

And into the other question: may this be beyond SM?

Classification of the “cleanest” modes, e.g. those that are less polluted by QCD penguins

Can Lattice QCD help here?
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