B-meson mixing A tale of two discrepancies (and a half)

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

> 8th B-physics workshop 6 Feb 2012

- 2 Meson mixing and SM
- 3 Meson mixing and NP
- 4 Cross-checking if NP is only $\Delta F = 2$

5 Conclusions

Two discrepancies (and a half)

The Unitarity triangle

Within CKM frequentist approach and Rfit model of systematics very good agreement of many constraints on CP violation

SM mechanism for CP-violation encoded in CKM matrix describes efficiently *B*_d

The Unitarity triangle

Within CKM frequentist approach and Rfit model of systematics very good agreement of many constraints on CP violation

SM mechanism for CP-violation encoded in CKM matrix describes efficiently B_d and B_s systems ?

The Unitarity triangle

Within CKM frequentist approach and Rfit model of systematics very good agreement of many constraints on CP violation

SM mechanism for CP-violation encoded in CKM matrix describes efficiently B_d and B_s systems ?

Not exactly:

• $\sin(2\beta)$ vs $B \rightarrow \tau \nu$

• A_{SL}

(β_s, ΔΓ_s) (?)

discrepancies related to meson mixing

Sébastien Descotes-Genon (LPT-Orsay)

1st Discrepancy: $sin(2\beta) \lor B \rightarrow \tau \nu$

Global fit χ^2_{min} drops by 2.7 σ (2.8 σ) if sin 2 $\beta_{c\bar{c}}$ ($B \rightarrow \tau \nu$) removed Babar, Belle

Issue not only the value of f_{B_d} since 2.8 σ discrepancy from

$$\frac{B(B\to\tau\nu)}{\Delta m_d} = \frac{3\pi}{4} \frac{m_\tau^2 \tau_B}{m_W^2 \eta_B S[x_t]} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \frac{\sin^2\beta}{\sin^2(\alpha+\beta)} \frac{1}{|V_{ud}|^2 B_{B_d}}$$

Sébastien Descotes-Genon (LPT-Orsay)

1st Discrepancy: $sin(2\beta)$ vs $B \rightarrow \tau \nu$

- Change in measured $Br(B \rightarrow \tau \nu)$ (2.6 σ) ?
- Correlated change in lattice values for f_{B_d} (2.6 σ) and B_{B_d} (2.7 σ)?
- New physics in decay (charged Higgs) or in mixing ?

2nd Discrepancy: A_{SL}

• Same-sign dimuon charge asymmetry yields A_{SL}

 $A_{\rm SL} = (-8.5 \pm 2.8) \cdot 10^{-3} (2010) \rightarrow (-7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} (2011)$

• Linear comb. of semileptonic (flavour specific) asym. for B_{d,s}

$$a_{SL}^{q} = \frac{\Gamma(\bar{B}_{q}(t) \to \ell^{+}\nu X) - \Gamma(B_{q}(t) \to \ell^{-}\nu X)}{\Gamma(\bar{B}_{q}(t) \to \ell^{+}\nu X) + \Gamma(B_{q}(t) \to \ell^{-}\nu X)} \neq 0 \Longrightarrow \text{CPV in mixing}$$

• SM expectation $A_{SL} = -(2.0 \pm 0.3) \cdot 10^{-4}$ [Lenz, Nierste 11]

Sébastien Descotes-Genon (LPT-Orsay)

B-meson mixing

06/02/12

3rd Discrepancy: ϕ_{Bs} ?

Angular analysis of $B_s \rightarrow J/\psi \phi$ to measure ϕ_{Bs} In SM, $\phi_{Bs} \rightarrow -2\beta_s = 2arg(V_{cs}V_{cb}^*/V_{ts}V_{tb}^*) = -2.09^{\circ} \pm 0.09^{\circ}$

● 2010 CDF/DØ φ_{Bs} ∈ [-67.6°, -30.9°]U[-148.9°, -111.1°]

3rd Discrepancy: ϕ_{Bs} ?

Angular analysis of $B_s \rightarrow J/\psi \phi$ to measure ϕ_{Bs} In SM, $\phi_{Bs} \rightarrow -2\beta_s = 2arg(V_{cs}V_{cb}^*/V_{ts}V_{tb}^*) = -2.09^{\circ} \pm 0.09^{\circ}$

2010 CDF/DØ φ_{Bs} ∈ [-67.6°, -30.9°]U[-148.9°, -111.1°]
 2011 a series of contradictory results

- DØ (6.1 fb⁻¹): $\phi_{Bs} = -43.5^{\circ} + 21.8^{\circ} \pm 1.2^{\circ}$
- LHCb $J/\psi f_0$ (0.41 fb⁻¹): $\phi_{Bs} = -25.2^{\circ} \pm 25.2^{\circ} \pm 1.2^{\circ}$
- LHCb $J/\psi\phi$ (0.37 fb⁻¹): $\phi_{Bs} = 8.6^{\circ} \pm 10.3^{\circ} \pm 3.4^{\circ}$
- CDF (5.2 fb⁻¹): φ_{Bs} ∈ [−59.6°, −2.3°]
- here: combine available LHCb and CDF ($\phi_{Bs}, \Delta\Gamma_s$) likelihoods

Meson mixing and SM

$B-\bar{B}$ system

$$irac{d}{dt}\left(egin{array}{c} |B_q(t)
angle \ |ar{B}_q(t)
angle \end{array}
ight) = \left(M^q - rac{i}{2} \Gamma^q
ight) \left(egin{array}{c} |B_q(t)
angle \ |ar{B}_q(t)
angle \end{array}
ight)$$

Non-hermitian Hamiltonian (only 2 states) but *M* and Γ hermitian
 Mixing due to non-diagonal terms M^q₁₂ - iΓ^q₁₂/2

 \implies Diagonalisation: physical $|B_{H,L}^q\rangle = p|B_q\rangle \mp q|\bar{B}_q\rangle$ of masses $M_{H,L}^q$, widths $\Gamma_{H,L}^q$

In terms of M_{12}^q , $|\Gamma_{12}^q|$ and $\phi_q = arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$ [using $|\Gamma_{12}^q| \ll |M_{12}^q|$] • Mass difference $\Delta M_q = M_H^q - M_L^q \simeq 2|M_{12}^q|$ • Width difference $\Delta \Gamma_q = \Gamma_L^q - \Gamma_H^q \simeq 2|\Gamma_{12}^q|\cos(\phi_q)$ • Asym $a_{SL} = \frac{\Gamma(\bar{B}_q(t) \to \ell^+ \nu X) - \Gamma(B_q(t) \to \ell^- \nu X)}{\Gamma(\bar{B}_q(t) \to \ell^+ \nu X) + \Gamma(B_q(t) \to \ell^- \nu X)} \simeq \frac{|\Gamma_{12}^q|}{|M_{12}^q|}\sin\phi_q$

Phase from mixing in time-dep analysis $q/p \simeq -M_{12}^{q*}/|M_{12}^q| = -e^{-i\phi_{Bq}}$

Sébastien Descotes-Genon (LPT-Orsay)

SM neutral-meson mixing

 c^{st} killed by GIM, and hierarchy of masses and CKM matrix elements:

$$A_{\Delta B=2} \propto (V_{tb}^* V_{td})^2 rac{g^4 m_t^2}{16 \pi^2 m_W^4} \langle \bar{B} | (\bar{b}_L \gamma_\mu d_L)^2 | B
angle + \dots$$

Sébastien Descotes-Genon (LPT-Orsay)

Computing neutral mixing in SM at NLO

Effective Hamiltonian approach (integrate out heavy W, Z, t)

 Γ^q₁₂ dominated by absorptive part of charm boxes [Im[loops]] [Beneke et al 1996-03, Ciuchini et al. 03]

- common *B* and \overline{B} decay channels into final states with $c\overline{c}$ pair
- non local contribution, computed assuming quark-hadron duality and expanded in 1/m_b and α_s series of local operators
- two operators at LO: Q and $\tilde{Q}_S = \bar{q}_L^{\alpha} b_R^{\beta} \bar{q}_L^{\beta} b_R^{\alpha}$

Sébastien Descotes-Genon (LPT-Orsay)

Uncertainties

Choice of operators Q and \tilde{Q}_S important to compute Γ_{12} depending mainly on Q, taming $1/m_b$ -corrections

[Nierste and Lenz 2006]

- B and B
 _S normalised contrib. from Q and Q
 _S (bag params.)
- $m_b^{pow}, B_{1/m_b}$ 1/ m_b -suppressed, unknown contrib.
- μ renormalisation scale $O(m_b)$

$$\Delta\Gamma_{s} = f[f_{Bs}, B, \tilde{B}_{S}; \mu, m_{b}^{pow}, B_{1/m_{b}}...]$$

$$\Delta\Gamma_{s}/\Delta M_{s} = f[\tilde{B}_{S}/B; B_{1/m_{b}}, m_{b}^{pow}, \mu, \bar{m}_{c}...]$$

$$a_{SL}^{s} = f[\tilde{B}_{S}/B; |V_{ub}/V_{cb}|, \gamma, \mu, \bar{m}_{c}, B_{1/m_{b}}...]$$

Sébastien Descotes-Genon (LPT-Orsay)

Three discrepancies in 2010

- $B \rightarrow \tau \nu$ vs sin 2 β
- β_s from $B_s \rightarrow J/\psi \phi$ and τ_{FS} (null test)
- A_{SL} (null test)

1D constraint : 2.6 σ

- 1D constraint : 2.1 σ
- 1D constraint : 2.9 σ

[ICHEP10 ($\beta_s, \Delta \Gamma_s$) not included, since no CDF/DØ updated average]

Two discrepancies in 2011

• $B \rightarrow \tau \nu$ vs sin 2 β

•
$$\beta_s$$
 from $B_s \rightarrow J/\psi \phi$ and τ_{FS} (null test)

• A_{SL} (null test)

1D constraint : 2.8 σ

1D constraint : 1.0 σ

1D constraint : 3.7 σ

[CDF/LHCb ($\beta_s, \Delta \Gamma_s$) average from $B_s \rightarrow J/\psi \phi$]

Sébastien Descotes-Genon (LPT-Orsay)

Meson mixing and NP

Since discrepancies for meson-mixing observables, why not New Physics only in $\Delta F = 2$ processes ?

- *M*₁₂ dominated by (virtual) top boxes [affected by NP, e.g., if heavy new particles in the box]
- Γ₁₂ dominated by tree decays into (real) charm states [affected by NP if changes in (constrained) tree-level decays]
- Tree level (4 diff flavours) processes not affected by New Physics

Model-independent parametrisation under the assumption that NP only changes modulus and phase of M_{12}^d and M_{12}^s

$$M^q_{12} = (M^q_{12})_{SM} imes \Delta_q \qquad \Delta_q = |\Delta_q| e^{i \phi_q^\Delta}$$

[A. Lenz et al., Phys.Rev. D83 (2011) 036004, update in prep.]

Three different NP scenarios for eff. Hamiltonian

• Minimal Flavour Violat. with small bottom Yukawa coupling (sc II)

$$H^{|\Delta B|=2} = (V_{tq}^* V_{tb})^2 CQ + h.c.$$
 C real

 $\Delta_d = \Delta_s$ real, related to *K*-meson mixing

MFV with large bottom Yukawa coupling (sc III)

$$H^{|\Delta B|=2} = (V_{tq}^* V_{tb})^2 [CQ + C_S Q_S + \tilde{C}_S \tilde{Q}_S] + h.c.$$

 $\Delta_d = \Delta_s$ complex, unrelated to *K*-meson mixing

• Non Minimal Flavour Violation (sc I)

$$H^{|\Delta B|=2} = (V_{tq}^*V_{tb})^2 C_q Q + h.c.$$

 Δ_d , Δ_s complex independent, unrelated to *K*-meson mixing \implies Will focus mainly on the latter scenario in the following

Sébastien Descotes-Genon (LPT-Orsay)

Fixing the CKM part

Observables not affected by NP, used to fix CKM :

 $|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, \gamma \text{ and } \gamma(\alpha) \equiv \pi - \alpha - \beta \text{ } (\phi_{B_d} \text{ cancels})$

Observables affected by NP, used to determine Δ_d , Δ_s

- Neutral-meson oscillation $\Delta m_d, \Delta m_s$
- Lifetime difference $\Delta \Gamma_d$
- Time-dep asymmetries related to $\phi_{B_d} = 2\beta + \phi_d^{\Delta}$, $\phi_{B_s} = -2\beta_s + \phi_s^{\Delta}$
- Semileptonic asymmetries a_{SL}^d , a_{SL}^s , A_{SL}

•
$$\alpha = \pi - \beta - \gamma - \phi_d^{\Delta}/2$$

(interference between decay and mixing)

Some of the theoretical inputs

- B_d , B_s , f_{B_d} , f_{B_d} parameters : our average of unquenched 2 and 2+1 lattice estimates
- Bag parameters for scalar operators from quenched lattice estimate [Becirevic et al. 2002, ongoing work from MILC]

$$ilde{B}_S'^{s}(m_b)/ ilde{B}_S'^{d}(m_b) = 1.00 \pm 0.03 \quad ilde{B}_S'^{s}(m_b) = 1.40 \pm 0.13$$

• 1/*m*_b suppressed operators: bag parameters (vacuum insertion approximation) and power correction scale

$$B_{Ri}(m_b) = 1.0 \pm 0.5$$
 $m_b^{\rm pow} = 4.70 \pm 0.10$

charm quark mass from σ(e⁺e⁻ → cc̄) sum rules to 3- and
 4-loops [Steinhauser and Kühn 2001-04, Jamin and Hoang 2004]

$$\bar{m}_c(\bar{m}_c) = 1.286 \pm 0.013 \pm 0.040 \text{ GeV}$$

*B*_d mixing (in 2010)

[Constraints 68% CL]

- Dominant const from β and Δm_d (2 rings from 2 sol for apex)
- Tension from $Br(B \rightarrow \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $Br(B \rightarrow \tau \nu)$ and A_{SL}

2D SM hypothesis ($\Delta_d = 1 + i \cdot 0$): 2.7 σ

*B*_d mixing (in 2011)

[Constraints 68% CL]

- Dominant const from β and Δm_d
- Tension from $Br(B \rightarrow \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $Br(B \rightarrow \tau \nu)$ and A_{SL}
- Improvement of γ , and thus contraint from $\alpha = \pi - \beta - \gamma - \phi_{d}^{\Delta}/2$

2D SM hypothesis ($\Delta_d = 1 + i \cdot 0$): 3.2 σ

B_s mixing (in 2010)

[Constraints 68% CL]

- Dominant constraints from Δm_s and ϕ_s
- Disagreement with SM driven by φ_s and A_{SL}
- In the same direction as for *B_d* mixing

2D SM hypothesis ($\Delta_s = 1 + i \cdot 0$): 2.7 σ

B_s mixing (in 2011)

[Constraints 68% CL]

- Dominant constraints from Δm_s and ϕ_s
- Disagreement with SM driven by *A*_{SL} alone
- and in mild disagreement with ϕ_s , which favours SM situation

2D SM hypothesis ($\Delta_s = 1 + i \cdot 0$): 0.8 σ

 $\phi_s^{\Delta} - 2\beta_s = (-123.9^{+9.0}_{-13.6})^{\circ}$ or $(-61.8^{+13.4}_{-8.9})^{\circ}$

 $A_{SL} = (-15.5^{+14.3}_{-5.9}) \cdot 10^{-4}$

Pulls

			- Deviation haturaan
Quantity	SM	Sc. I	Deviation between
$\phi_d^{\Delta} + 2\beta$	2.7 σ	2.0 σ	measurement and
$\phi_{s}^{\overline{\Delta}} - 2\beta_{s}$	1.0 σ	2 .7 σ	prediction (w/o meas.) in
Δm_d	1.0 σ	2.5 σ	given model
Δm_s	0.0 σ	2 .7 σ	If given the possibility,
A _{SL}	3 .7 σ	2.9 σ	Sc. I tries to
agd	0.9 σ	0.2 σ	accomodate
	0.2 σ	0.2 σ	measurements by
$\Delta \Gamma_s$	0.0 σ	0.7 σ	modifying ϕ_{s} , A_{SL} or
$\mathcal{B}(\pmb{B} ightarrow au u)$	2.8 σ	0.7 σ	$\Delta m_{d,s}$ (tiny $ \Delta_{d,s} $)
$\mathcal{B}(B \rightarrow \tau \nu), A_{SL}$	4.6 σ	2.6 σ	But not able to
$\phi_{s}^{\Delta}-2eta_{s}, A_{\mathrm{SL}}$	3.4 σ	2.5σ	accomodate $\mathcal{B}(B \rightarrow \tau \nu)$,
$\mathcal{B}(B \rightarrow au u), \phi_s^{\Delta} - 2\beta_s, A_{SL}$	4.1 σ	2.2 σ	$\phi_s^{\Delta} - 2\beta_s, A_{\rm SL}$ at the
			same time

Another case: Scenario III (in 2010)

[Constraints 68% CL]

 Minimal Flavour Violation with large bottom Yukawa coupling

•
$$\Delta_d = \Delta_s = \Delta$$
 complex

• All three discrepancies in the same direction

2D SM hypothesis ($\Delta = 1 + i \cdot 0$): 3.3 σ

Another case: Scenario III (in 2011)

[Constraints 68% CL]

 Minimal Flavour Violation with large bottom Yukawa coupling

•
$$\Delta_d = \Delta_s = \Delta$$
 complex

• discrepancy among data more acute in this scenario: A_{SL} in one direction, $B_s \rightarrow J/\psi\phi$ in another, with sin(2 β) standing in the middle

2D SM hypothesis ($\Delta = 1 + i \cdot 0$): 2.7 σ

New physics also in Γ_{12}^s ?

$$\Delta M_{s} = 2|M_{12}^{s}| \qquad \Delta \Gamma_{s} = 2|\Gamma_{12}^{s}|\cos(\phi_{s}) \qquad a_{SL}^{s} = \frac{\Gamma_{12}^{s}}{M_{12}^{s}}\sin(\phi_{s})$$

Could solve A_{SL} , but significant deviation of $\Delta\Gamma_s$ w.r.t. SM

$$A_{\Delta B=2} = \langle \bar{B} | \mathcal{H}_{\text{eff}}^{\Delta B=2} | B \rangle - \frac{1}{2} \int d^4 x d^4 y \langle \bar{B} | T \mathcal{H}_{\text{eff}}^{\Delta B=1}(x) \mathcal{H}_{\text{eff}}^{\Delta B=1}(y) | B \rangle$$

- Change in b → cc̄s modes or new decay mode competing in Γ^s₁₂ would affect Γ¹¹_s and thus Γ_s (in good agreement with SM)
- Change in $b \to c\bar{c}s$ modes affects also $B_d \to J/\psi K_s$ and $B_s \to J/\psi \phi$ and thus determination of B_d , B_s mixing angles
- Change in Γ_{12}^s impacts M_{12}^s (same box diagams with same particles) and thus ΔM_s (in good agreement with SM)

No model-independent way of connecting $\Gamma_{12}^s, \Gamma_{11}^s, M_{12}^s$

Sébastien Descotes-Genon (LPT-Orsay)

B-meson mixing

06/02/12 30

Example of New Physics in Γ_{12}^s (Haisch, Bobeth 11)

- $\tau \bar{\tau}$ intermediate states due to NP $(\bar{b}s)(\bar{\tau}\tau)$ operators ?
- Eff. Hamiltonian analysis of $b \to s\gamma$, $b \to s\ell^+\ell^-$, $b \to s\gamma\gamma$: room for scalar or vector ops. able to enhance $|\Gamma_{12}^s|$ by 30-40%

- But M^s₁₂ and Γ^s₁₂ correlated in specific models (e.g., SU(2) singlet scalar leptoquark) making it difficult to accomodate all data
- General problem for $(M_{12}^s)_{NP}/(\Gamma_{12}^s)_{NP}$ real, linking ΔM_s , $\Delta \Gamma_s$, a_{SL}^s [weakest ΔM_s constraint if light NP scale or GIM-like mechanism]

NP in $\Delta B = 2$ not enough ? Or A_{SL} the problem ?

Sébastien Descotes-Genon (LPT-Orsay)

Only $\Delta F = 2$?

Checking NP in $\Delta F = 2$ only

• General relationship among observables under this hypothesis [Grossman, Nir, Perez 09] $\frac{y}{x} = \frac{1 - |q|/|p|}{\tan \phi_s} \Longrightarrow a_{SL}^s = \pm 2 \left| \frac{y}{x} \right| \tan(\beta_s^{\psi \phi}) \qquad x = \frac{\Delta m}{\Gamma}, y = \frac{\Delta \Gamma}{2\Gamma}$

- New observables under fairly general scenarios (Sc. I,II,III) [A. Lenz et al., Phys.Rev. D83 (2011) 036004]
- Additional theoretical assumptions to cross-check specific channels

[SDG, J. Matias, J. Virto, arXiv:1111.4882]

Interesting penguin-mediated decays

Consider tree and penguin decomposition of $B_Q \to K^0 \bar{K}^0 \ (Q = d, s)$ $\bar{A} \equiv A(\bar{B}_Q \to K^0 \bar{K}^0) = V_{ub} V_{uq}^* T + V_{cb} V_{cq}^* P$ $A \equiv A(B_Q \to K^0 \bar{K}^0) = V_{ub}^* V_{uq} T + V_{cb}^* V_{cq} P$ q = Q

Only penguin diagrams no contrib. from W-exch. ($O_{1,2}$)

Difference between tree and penguin from u, c, t quarks in loop

 $\Longrightarrow \delta = T - P$ dominated by short-distance physics computed fairly accurately within QCD factorisation (exp. in α_s , 1/m_b)

 $\begin{array}{lll} \delta(B_d \to K^0 \bar{K}^0) &=& (1.09 \pm 0.43) \cdot 10^{-7} + i (-3.02 \pm 0.97) \cdot 10^{-7} \mathrm{GeV} \\ \delta(B_s \to K^0 \bar{K}^0) &=& (1.03 \pm 0.41) \cdot 10^{-7} + i (-2.85 \pm 0.93) \cdot 10^{-7} \mathrm{GeV} \end{array}$

Various penguin-mediated modes of interest

Channel	$ \delta (10^{-7} \text{GeV})$
$B_d ightarrow Kar{K}$	(3.23 ± 1.16)
$B_{s} ightarrowar{K}K$	(3.05 ± 1.11)
$B_d o K \phi$	(2.32 ± 1.00)
$B_d ightarrow Kar{K}^*$	(2.29 ± 0.93)
$B_d o K^*ar{K}$	(0.41 ± 0.60)
$B_{s} ightarrow ar{K} K^{st}$	$(\textbf{2.16}\pm\textbf{0.89})$
$B_s ightarrow ar{K}^*K$	(0.36 ± 0.53)
$B_d o K^* ar K^*$	(1.85 ± 0.93)
$B_{s} ightarrow ar{K}^{*}K^{*}$	(1.62 ± 0.81)
$m{B_d} ightarrow m{K^*} \phi$	(1.92 ± 1.03)
$B_{s} ightarrow \phi K^{*}$	(1.87 ± 0.94)
$B_{s} \rightarrow \phi \phi$	(3.86 ± 2.09)

- Penguin modes for B_Q decaying through $b \rightarrow q$ transition (Q, q = d, s)
- For VV modes, only observables for a longitudinally polarised final states (transverse polar. are 1/m_b-suppressed, only modelled in QCD factorisation)
- Which requires one to translate measurements into "longitudinal observables" (BR, asymmetries)

Relating $\delta = T - P$ and observables

In terms of $A \equiv A(B_Q \rightarrow M_1 M_2)$ and $\bar{A} \equiv A(\bar{B}_Q \rightarrow M_1 M_2)$

- $b \rightarrow q$ penguin mediated decay into state of CP-parity η_f
- $BR = g_{ps}(|A|^2 + |\bar{A}|^2)/2$ with g_{ps} phase space factor
- 3 CP asymmetries with $A_{\rm dir}^2 + A_{\rm mix}^2 + A_{\Delta\Gamma}^2 = 1$

$$A_{\rm dir} \equiv \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \qquad A_{\rm mix} + iA_{\Delta\Gamma} \equiv -2\eta_f \frac{e^{-i\phi_{B_Q}}A^*\bar{A}}{|A|^2 + |\bar{A}|^2}$$

Relating $\delta = T - P$ and observables

In terms of $A \equiv A(B_Q \rightarrow M_1 M_2)$ and $\bar{A} \equiv A(\bar{B}_Q \rightarrow M_1 M_2)$

- $b \rightarrow q$ penguin mediated decay into state of CP-parity η_f
- $BR = g_{ps}(|A|^2 + |\bar{A}|^2)/2$ with g_{ps} phase space factor
- 3 CP asymmetries with $A_{\rm dir}^2 + A_{\rm mix}^2 + A_{\Delta\Gamma}^2 = 1$

$$A_{\rm dir} \equiv \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \qquad A_{\rm mix} + iA_{\Delta\Gamma} \equiv -2\eta_f \frac{e^{-i\phi_{B_Q}} A^* \bar{A}}{|A|^2 + |\bar{A}|^2}$$

Assuming NP affects only phase in B_Q mixing ($\Delta_Q = e^{i\phi_Q^{\Delta}}$)

$$2g_{ps}|\delta|^{2}|V_{cb}V_{cq}^{*}|^{2}\sin^{2}\beta_{q} = BR(1 - \eta_{f}\sin\Phi_{Qq}A_{mix} + \eta_{f}\cos\Phi_{Qq}A_{\Delta\Gamma})$$

•
$$\Phi_{Qq} = 2\beta_Q - 2\beta_q + \phi_Q^{\text{NP}}$$
 $(\phi_d^{\text{NP}} = \phi_d^{\Delta}, \phi_s^{\text{NP}} = -\phi_s^{\Delta}),$

• Constraint on A_{dir} (near zero) for a solution ϕ_Q^{NP} to exist

• Determine ϕ_Q^{NP} from $|\delta|$, *BR*, A_{mix} (and CKM from tree decays)

Illustration for two measured modes

(A_{mix}, A_{ΔΓ} = ±√1 - A²_{mix} - A²_{dir}) asymmetries at 1 σ in grey box
 φ^{NP}_d(φK_S) = -0.36 ± 0.22 rad, φ^{NP}_d(φK*) = 0.33 ± 0.90 rad

Illustration for $B_s o K_0 ar{K}_0$

• Estimate of *BR* from $B_d \rightarrow K_0 \bar{K}_0 + SU(3)$ flavour symmetry

Sébastien Descotes-Genon (LPT-Orsay)

The end of the tale

Conclusions

Interesting hints of NP in $\Delta F = 2$

- $Br(B \rightarrow \tau \nu)$ vs sin 2β
- A_{SL}
- β_s ?

 $[B \rightarrow \tau \nu \text{ cross-check ?}]$ [separate a_{SL}^d and a_{SL}^s ?] [higher statistics ? other modes ?]

Scenarios of NP in $\Delta F = 2$

- Conflict between current A_{SL} and ϕ_s not solved by NP in M_{12} only
- Could be solved by NP in Γ^s₁₂, but affects other SM-compatible observables in mixing (ΔM_s, ΔΓ_s, Γ_s) as well as in b → s decays
- No model-indep. connection, but correlations in specific models

Cross-checks through penguin-mediated decays [prospects ?]

- Interesting laboratory to probe NP in mixing phase
- Theory input restricted to QCDF computation of T P
- Alternative determination of ϕ_Q^{NP} from (longitudinal) BR and $A_{\rm mix}$

CKM fitter		к	VI F	R T	E R	
Home	CKMfitte	er global f	fit resul	ts as of Lep	oton Photon 11:	
Plots & Results Specific Studies	Wolfenstein parameters UT angles and sides					
Talks & Writeups Publications	Creating and appendix CKM elements Theory parameters Revelopment freetings (Revelopment)					
CKMfitter Group	For a more extensive discussion, please read the summary of inputs and results.					
Code	Wolfenstein parameters and Jarlskog invariant:					
Contact	Observable	Central	±1σ	±2σ	±3 σ	
Copyright D 2011 by CKMOner group	٨	0.801 [+0.026 -	0.014]	0.801 [+0.036 -0.02	2 0.801 [+0.046 -0.029]	
	٨	0.22539 (+0.000 0.00095)	062 -	0.2254 (+0.0010 - 0.0019)	0.2254 [+0.0014 - 0.0027]	
	pbar	0.144 [+0.023 -0.026] 0.144 [+0.038 -0.04 [0.343 [+0.015 -0.014] 0.343 [+0.030 -0.02 [2.884 [+0.253 -0.053] 2.884 [+0.400 -0.05		0.144 [+0.038 -0.04	3] 0.144 [+0.048 -0.057]	
	ŋbar			0.343 [+0.030 -0.02	5] 0.343 [+0.045 -0.033]	
	J [10 ⁻⁵]			6] 2.88 [+0.55 -0.14]		
	UT angles and sides:					
	Observable	ervable Central ±		±2σ	±3σ	

sin 2α	-0.03 [+0.14	-0.03 [+0.25 -0.21]	-0.03 [+0.31 -0.26]
sin 2α (meas. not in the fit)	-0.10 [+0.18 -0.12]	-0.10 [+0.34 -0.17]	-0.10 [+0.40 -0.22]
sin 2j3	0.691 [+0.020 - 0.020]	0.691 [+0.040 -0.034]	0.691 [+0.060 -0.047]
sin 2(3 (meas. not in the fit)	0.830 [+0.013 - 0.033]	0.830 [+0.025 -0.098]	0.830 [+0.037 -0.170]
a (deg)	90.9 [+3.5 - 4.1]	90.9 [+6.0 -7.2]	90.9 [+7.5 -8.9]
α [deg] (meas. not in the fit)	92.9 [+3.6 - 5.1]	92.9 [+5.0 -9.8]	92.9 [+6.4 -11.7]
α [deg] (dir. meas.)	89.0 [+4.4 - 4.2]	89.0 [+9.1 -8.4] 178.3 [+2.2 - 5.6] -1.8 [+6.6 -5.6]	89 [+21 -13] 178.3 [+2.5 - 13.8] -2 [+14 -14]
β [deg]	21.84 [+0.80 -0.76]	21.8 [+1.6 -1.3]	21.8 [+2.5 -1.8]
β [deg] (meas. not in the fit)	28.06 [+0.67	28.1 [+1.4 -4.5]	28.1 [+2.0 -7.4]
β [deg] (dir. meas.)	21.38 [+0.79 -0.77]	21.4 [+1.6 -1.5]	21.4 [+2.4 -2.3]

More plots and results available on http://ckmfitter.in2p3.fr

- J. Charles, Theory O. Deschamps, LHCb
- SDG, Theory
- R. Itoh, Belle
- A. Jantsch, ATLAS
- H. Lacker, ATLAS
- A. Menzel, ATLAS
- S. Monteil, LHCb
- V. Niess, LHCb
- J. Ocariz, BaBar
- S. T'Jampens, LHCb
- V. Tisserand, BaBar/LHCb
- K. Trabelsi, Belle

Back-up

Inputs of the SM global fit

CKM matrix within a frequentist framework ($\simeq \chi^2$ minimum) + specific scheme for theory errors (Rfit)

data = weak \otimes QCD

 \Longrightarrow Need for hadronic inputs (often lattice) with good theoretical control

$ V_{ud} $	superallowed β decays
$ V_{us} $	$K_{\ell 3}$ (Flavianet Kaon WG)
	${\it K}_{\ell 2}, au ightarrow {\it K} u_{ au}$
$ V_{us} / V_{ud} $	$K_{\ell 2}/\pi_{\ell 2}, au ightarrow K u_ au/ au ightarrow \pi u_ au$
ϵ_K	PDG 08
$ V_{ub} $	inclusive and exclusive
$ V_{cb} $	inclusive and exclusive
Δm_d	last WA B_d - \overline{B}_d mixing
Δm_s	last WA B_s - \overline{B}_s mixing
β	last WA $J/\psi K^{(*)}$
α	last WA $\pi\pi, \rho\pi, \rho\rho$
γ	last WA $B ightarrow D^{(*)} K^{(*)}$
B ightarrow au u	$(1.68 \pm 0.31) \cdot 10^{-4}$

PRC79, 055502 (2009) $f_{+}(0) = 0.963 \pm 0.003 \pm 0.005$ $f_{K} = 156.3 \pm 0.3 \pm 1.9 \text{ MeV}$ $f_{K}/f_{\pi} = 1.1985 \pm 0.0013 \pm 0.0019$ $\hat{B}_{K} = 0.732 \pm 0.004 \pm 0.036$ $|V_{ub}| \cdot 10^{3} = 3.92 \pm 0.09 \pm 0.45$ $|V_{cb}| \cdot 10^{3} = 40.89 \pm 0.38 \pm 0.59$ $B_{B_{S}}/B_{B_{d}} = 1.024 \pm 0.013 \pm 0.015$ $B_{B_{S}} = 1.291 \pm 0.025 \pm 0.035$

isospin GLW/ADS/GGSZ $f_{B_s}/f_{B_d} = 1.235 \pm 0.008 \pm 0.033$ $f_{B_s} = 231 \pm 3 \pm 15$ MeV Consistent averages of lattice results for hadronic quantities needed

 \implies we perform our own averages

Consistent averages of lattice results for hadronic quantities needed

- \Rightarrow we perform our own averages
- Collecting lattice results
 - only unquenched results with 2 or 2+1 dynamical fermions
 - papers and proceedings (but not preliminary results)
- Splitting error estimates into stat and syst
 - Stat : essentially related to size of gauge conf
 - Syst : fermion action, $a \rightarrow 0, L \rightarrow \infty$, mass extrapolations...

added linearly when error budget available

- Potential problems
 - proceedings not always followed by peer-reviewed papers
 - some syst estimates controversial within lattice community (staggered action, extrapolations...)

"Educated Rfit" used to combine the results, with different treament of statistical and systematic errors

- product of (Gaussian + Rfit) likelihoods for central value
- product of Gaussian (stat) likelihoods for stat uncertainty
- syst uncertainty of the combination

= the one of the most precise method

Conservative, algorithmic procedure with internal logic for syst

- the present state of art cannot allow us to reach a better theoretical accuracy than the best of all estimates (combining 2 methods with similar syst does not reduce the intrinsic uncertainty encoded as a systematic)
- best estimate should not be penalized by less precise methods (opposed, e.g., to combined syst = dispersion of central values)

Our average for $B_K^{\overline{MS}}$ (2 GeV)

Reference	N_{f}	Mean	Stat	Syst
JLQCD08	2	0.537	0.004	0.072
ETMC10	2	0.532	0.019	0.026
HPQCD/UKQCD06	2+1	0.618	0.018	0.179
ALVdW09	2+1	0.527	0.006	0.035
RBC/UKQCD10	2+1	0.549	0.005	0.038
BSW10	2+1	0.523	0.007	0.039
Our average		0.534	0.003	0.026
Our average for \hat{B}_K		0.732	0.004	0.036

- Other values proposed: 0.737 ± 0.020 (latticeaverages.org)
- Method used for B_d and B_s decay constants, bag parameters, form factors...

$K - \bar{K}$ mixing in the SM

Impact of the statistical treatment of theoretical inputs on ϵ_{K} κ_{ϵ} , $|V_{cb}|$, \hat{B}_{K} , $\eta_{ct,cc,tt}$, $\bar{m}_{c,t}$

Gaussian error: 1.6 σ discrepancy
Rfit error: no discrepancy

Sébastien Descotes-Genon (LPT-Orsay)

|V_{ub}| inclusive and exclusive

Two ways of getting $|V_{ub}|$:

- Inclusive : $b \rightarrow u \ell \nu$ + Operator Product Expansion
- Exclusive : $B \rightarrow \pi \ell \nu$ + Form factors

Tension depends on statistical treatment:

- discrepancy solved once systematics combined in Educated Rfit
- same problem for $|V_{cb}|$

A few predictions for Scenario I

Quantity	1σ
$\operatorname{Re}(\Delta_d)$	$0.757^{+0.132}_{-0.083}$
$Im(\Delta_d)$	$-0.181\substack{+0.053\\-0.045}$
$\operatorname{Re}(\Delta_s)$	$-0.895^{+0.082}_{-0.120}$ or $0.895^{+0.020}_{-0.018}$
$Im(\Delta_s)$	$-0.04^{+0.17}_{-0.17}$
$\phi^{\Delta}_{d}+2eta$ [deg] (!)	17. ^{+13.}
$\phi_{m{s}}^{ar{\Delta}}-2eta_{m{s}}$ [deg] (!)	$-123.9^{+9.0}_{-13.6}$ or $-61.8^{+13.4}_{-8.9}$
A _{SL} [10 ⁻⁴] (!)	$-15.5^{+14.3}_{-5.9}$
a ^d _{SL} [10 ⁻⁴] (!)	$-35.8^{+6.9}_{-4.6}$
as_[10 ⁻⁴] (!)	$-3.^{+11.}_{-13.}$
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$ (!)	$-0.169^{+0.080}_{-0.023}$ or $0.168^{+0.041}_{-0.112}$
$B \to \tau \nu \ [10^{-4}] \ (!)$	$1.471^{+0.075}_{-0.261}$

(!): the prediction is made without including the measurementWarning: non-Gaussian tails for some observables

Sébastien Descotes-Genon (LPT-Orsay)

 $Br(B_s \to \mu\mu) = (3.51^{+0.18}_{-0.31}) \cdot 10^{-9}$

 γ [meas, 2010] = $(71^{+21}_{-25})^{\circ}$ γ [meas, 2011] = $(68^{+10}_{-11})^{\circ}$

- Update in ADS inputs from Belle, CDF
- Better control over nuisance parameters in statistical treatment

Longitudinal observables ($B_d \rightarrow \phi K^*$)

• A_0 decay amplitude for B_Q into a longitudinally polarised pair, \bar{A}_0 its CP conjugate • Longitudinal BR: $Br^{\text{long}} = g \frac{|A_0|^2 + |\bar{A}_0|^2}{2}$ with $g = g_{\rho s}$ phase space • Asymmetries: $A_{\text{dir}}^{\text{long}} = \frac{|A_0|^2 - |\bar{A}_0|^2}{|A_0|^2 + |A_0|^2}$ $A_{\Delta\Gamma}^{\text{long}} + iA_{\text{mix}}^{\text{long}} = -2\eta_0 \frac{e^{-i\phi_{B_Q}} A_0^* \bar{A}_0}{|A_0|^2 + |\bar{A}_0|^2}$ - (+) superscript for B_d (\bar{B}_d) observables of $B_d \to \phi K^*$ [Babar] $Br^+ = \frac{\bar{\Gamma}}{\Gamma_{\text{tot}}} = g \sum_{\lambda} |\bar{A}_{\lambda}|^2$, $Br^- = \frac{\Gamma}{\Gamma_{\text{tot}}} = g \sum_{\lambda} |A_{\lambda}|^2$, $f_L^+ = \frac{|\bar{A}_0|^2}{\sum_{\lambda} |\bar{A}_{\lambda}|^2}$, $f_L^- = \frac{|A_0|^2}{\sum_{\lambda} |A_{\lambda}|^2}$

$$Br = \frac{1}{2} \frac{1}{\Gamma_{\text{total}}} \left(\overline{\Gamma} + \Gamma \right), \quad \mathcal{A}_{CP} = \frac{\overline{\Gamma} - \Gamma}{\overline{\Gamma} + \Gamma}, \quad f_L = \frac{1}{2} \left(f_L^+ + f_L^- \right), \quad \mathcal{A}_{CP}^0 = \frac{f_L^+ - f_L^-}{f_L^+ + f_L^-}$$

Dictionnary w.r.t. longitudinal observables

$$Br^{\text{long}} = Br \cdot f_L \cdot [1 + \mathcal{A}_{CP}^0 \cdot \mathcal{A}_{CP}], \qquad A_{\text{mix}}^{\text{long}} = \eta \sqrt{1 - (\mathcal{A}_{\text{dir}}^{\text{long}})^2 \sin(2\beta + \arg(\mathcal{A}_0/\bar{\mathcal{A}}_0))}$$
$$A_{\text{dir}}^{\text{long}} = -\frac{\mathcal{A}_{CP}^0 + \mathcal{A}_{CP}}{1 + \mathcal{A}_{CP}^0 \cdot \mathcal{A}_{CP}}, \qquad A_{\Delta\Gamma}^{\text{long}} = -\eta \sqrt{1 - (\mathcal{A}_{\text{dir}}^{\text{long}})^2} \cos(2\beta + \arg(\mathcal{A}_0/\bar{\mathcal{A}}_0))$$

with $\arg(A_0/\bar{A}_0) = 2\Delta\delta_0 + 2\Delta\phi_0$ measured