

OUTLINE

- Physics motivations
- Detectors and data samples
- Data analysis
 - Common analysis techniques
 - $B_{s,d} \rightarrow \mu^+ \mu^- at CMS$
 - $B_{s,d} \rightarrow \mu^+ \mu^- at LHCb$
- Combination of the two LHC limits
- Future perspectives

THEORETICAL MOTIVATIONS

- Decays highly suppressed in SM
 - Effective FCNC decay
 - Helicity suppression
 - Overall Cabibbo suppression

Buras, Isidori & Paradisi Phys.Lett. B694 402 (2010)

 Enhancements in several BSM physics scenarios:

NUHM1

•

2/6/2012

R. Covarelli

EXPERIMENTAL MOTIVATIONS

- Ultra-clean experimental signature
- Small BRs → needing huge bb
 samples
- CKM-hierarchy favoring B_s over B^0 ($BR(B_d \rightarrow \mu^+\mu^-)/BR(B_s \rightarrow \mu^+\mu^-) \approx |V_{td}/V_{ts}|^2$ under generic MFV assumption)

- Before LHC data, world best results from Tevatron:
 - DO: BR($B_s \rightarrow \mu\mu$) < 5.1 x 10⁻⁸ @ 95% CL (6.1 fb⁻¹)
 - CDF: BR($B_s \rightarrow \mu\mu$) < 4.0 x 10⁻⁸ @ 95% CL (6.9 fb⁻¹) but observing an excess in data compatible with a measurement of BR($B_s \rightarrow \mu\mu$) = (1.8_{-0.9}^{+1.1}) x 10⁻⁸ [5.6 x SM]

- Vertexing, displacement and/or invariant mass requirements to select J/ψ and $B_{s,d}$

INTEGRATED LUMINOSITY

- Used for analyses presented here:
 - 1.14 fb⁻¹ (CMS)
 - 0.37 fb⁻¹ (LHCb) plus combination with independent

COMMON ANALYSIS TECHNIQUES

Blind analyses

- Use of "normalization channels" to
 - remove large uncertainties on luminosity and σ_{bb}
 - reduce efficiency systematic uncertainties in the ratio

$$\mathcal{B}(B_q^0 \to \mu^+ \mu^-) = \mathcal{B}_{\text{norm}} \times \frac{\epsilon_{\text{norm}}^{\text{REC}} \epsilon_{\text{norm}}^{\text{SEL|REC}} \epsilon_{\text{norm}}^{\text{TRIG|SEL}}}{\epsilon_{\text{sig}}^{\text{REC}} \epsilon_{\text{sig}}^{\text{SEL|REC}} \epsilon_{\text{sig}}^{\text{TRIG|SEL}}} \times \frac{f_{\text{norm}}}{f_{B_q^0}} \times \frac{N_{B_q^0 \to \mu^+ \mu^-}}{N_{\text{norm}}} = \alpha_{B_q^0 \to \mu^+ \mu^-} \times N_{B_q^0 \to \mu^+ \mu^-}$$

- <u>LHCb</u>: normalization factor (α) determined on 3 channels and averaged

 - $B^+ \rightarrow J/\psi \ (\mu^+\mu^-) \ K^+$ same muon selection and trigger, • $B_s \rightarrow J/\psi (\mu^+\mu^-) \phi (K^+K^-)$ slightly different kinematics (extra tracks)
 - $B^0 \rightarrow K^- \pi^+$ same kinematics, different trigger
- <u>CMS</u>: only uses $B^+ \rightarrow J/\psi K^+(B_s \rightarrow J/\psi \phi$ used as control sample to estimate systematics on analysis selection, impossible to trigger on hadron modes)

CMS ANALYSIS

CMS Collaboration Phys. Rev. Lett. 107, 191802 (2011)

2/6/2012

R. Covarelli

ANALYSIS PRINCIPLES

• Main backgrounds:

- Collimated muons from two semileptonic B decays (\rightarrow gluon splitting)
- One muon from semileptonic B decay plus one misidentified hadron
- Rare decays
 - Peaking (e.g. $B_s \rightarrow K^+ K^-$)
 - Non-peaking (e.g. $B_s \rightarrow K^+ \mu^- \nu$)
- Separated analysis in barrel/endcap
- Cut optimization and count in B⁰ and B_s mass windows
 - check robustness against large pile-up variations
 - mass sidebands for expected background estimation
- Efficiency ratios from MC and checked in data
 - Muon efficiencies: using the "tag-and-probe" method
 - Selection efficiency: using the $B_s \to J/\psi \ \varphi$ control sample

SELECTION: TRIGGER

- Essential ingredient \rightarrow HLT output must be a few Hz!
- Di-muon trigger
 - L1 (hardware) with no p_T requirement ← few kHz at current peak luminosities
 - HLT for $B_s \rightarrow \mu\mu$: Opposite charge
 - Single muon $p_T^{\mu} > 2 \text{ GeV/c}$, dimuon $p_T^{\mu\mu} > 4 \text{ GeV/c}$
 - Invariant mass $4.8 < m_{\mu\mu} < 6.0 \text{ GeV/c}^2$
 - Distance of closest approach (DCA) < 5 mm
 - HLT for $B^+ \rightarrow J/\psi \ K^+$ and $B_s \rightarrow J/\psi \ \phi$:
 - J/ψ invariant mass cut
 - $p_T^{\mu} > 3 \text{ GeV/c}, p_T^{\mu\mu} > 7 \text{ GeV/c}$
 - "Displaced vertex": cuts on vertex χ^2 probability, 2D pointing angle (cos α_{2D})

MUON EFFICIENCY RATIO

- Systematic uncertainties:
 - Obtained from differences in MC and tag-and-probe

- Determined from MC and crosschecked with data ("tag-andprobe" method)
 - Use inclusive J/ψ with no (or partial) trigger bias on one muon
 - In events with a J/ψ candidate, ask for one well-identified muon ("tag")
 - The other muon ("probe") can pass or not pass the selection *S* under investigation
 - Invariant mass plots separate for the two cases
 - The fitted N_{pass-S}/N_{all} gives an unbiased estimate of the efficiency $\varepsilon_{\rm S}$

SELECTION: CUT OPTIMIZATION (1)

R. Covarelli

Signal resolution from MC

- 36 to 77 MeV/c² depending on rapidity \rightarrow (blinded region 5.20 < m_{µµ} < 5.45 GeV/c²)
- Background from mass sidebands (4.9 < $m_{\mu\mu}$ < 5.9 GeV/c² excluding blinded)
- Grid search optimization for best upper limit
- Selection variables:
 - 1) Muon and dimuon p_T
 - 2) vertex χ^2 probability
 - 3) 3D pointing angle $(\cos \alpha_{3D})$
 - 4) Flight length significance $(l_{3D} / \sigma(l_{3D}))$

SELECTION: CUT OPTIMIZATION (2)

5) Relative di-muon isolation in a cone around the B direction

 $I = \frac{p_{\perp}(\mu^{+}\mu^{-})}{p_{\perp}(\mu^{+}\mu^{-}) + \sum_{\Delta R < 1} p_{\perp}}$

Tracks are counted in the isolation if

1) $p_T > 0.9 \text{ GeV/c}$

a DCA < 0.5 mm with respect to the SV

Essential for pile-up independence of the efficiency

6) DCA of the closest track to the SV

R. Covarelli

Optimization result

Variable		Barrel	Endcap	units
$p_{\perp \mu_1}$	>	4.5	4.5	GeV
$p_{\perp \mu_2}$	>	4.0	4.0	GeV
$p_{\perp B}$	>	6.5	6.5	GeV
χ^2/dof	<	1.6	1.6	
α	<	0.050	0.025	rad
$\ell_{3d}/\sigma(\ell_{3d})$	>	15.0	20.0	
Ι	>	0.75	0.75	
d_{ca}^0	>	n/a	0.015	cm

CUT SYSTEMATICS AND PILE-UP

- Cut efficiency systematics determined from data/MC difference in the $B_s \rightarrow J/\psi \phi$ control sample
 - determined separately for each cut then added in quadrature

- Pile-up independence of selection checked
 - OK for the sample considered (<N_{PV}>^{max} ~ 12)

R. Covarelli

NORMALIZATION AND BACKGROUND

- N_{norm} from invariant mass fit to the B⁺ $\rightarrow J/\psi$ K⁺ sample
 - Barrel: 13050 ± 650
 - Endcap: 4450 ± 220
 - Uncertainties include statistics and systematics (mainly from background shape)

- Combinatorial background from sideband interpolation assuming flat distribution
- Peaking background shapes from MC → sum of many exclusive decays
 - Contribution in the signal region estimated by weighting with measured K, π and p muon mistag probabilities (from K_s $\rightarrow \pi^+ \pi^-$, $\phi \rightarrow K^+ K^-$ and $\Lambda \rightarrow p \pi^-$)

R. Covarelli

SYSTEMATICS AND CROSS-CHECKS

 Signal estimation 			
- Analysis efficiency: data/MC comparison in $B_s \to J/\psi \; \varphi$	8%		
• Resolution: data/MC comparison in J/ ψ and Y(1S)	3%		
Normalization sample			
Kaon tracking efficiency	4%		
 Analysis efficiency: data/MC comparison 	4%		
Fitting procedure	5%		
Sideband background estimation			
 From sample with reversed isolation cut 	4%		
Acceptance/efficiency ratios			
 Acceptance: variation of production processes 	4%		
 Efficiency ratio for muon reconstruction and identification 	5%		
Efficiency ratio for muon trigger	3%		
Other cross-checks			
• Yields vs. data-taking period, measurement of $BR(B_s \rightarrow J/\psi \phi)$			
2/6/2012 R. Covarelli	18		

RESULTS

	Bar	rel	Endcap	
	$B^0 \to \mu^+ \mu^-$	$B_s^0 \to \mu^+ \mu^-$	$B^0 \to \mu^+ \mu^-$	$B_s^0 \to \mu^+ \mu^-$
Acceptance	$(24.62 \pm 0.99) \times 10^{-2}$	$(24.72 \pm 0.99) \times 10^{-2}$	$(22.61 \pm 0.91) \times 10^{-2}$	$(23.14 \pm 0.93) \times 10^{-2}$
$\varepsilon_{ m tot}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$
$N_{ m signal}^{ m exp}$	0.065 ± 0.011	0.80 ± 0.16	0.025 ± 0.004	0.36 ± 0.07
$N_{\rm bg}^{\rm exp}$	0.40 ± 0.23	0.60 ± 0.35	0.53 ± 0.27	0.80 ± 0.40
$N_{ m peak}^{ m \widetilde{exp}}$	0.25 ± 0.06	0.07 ± 0.02	0.16 ± 0.04	0.04 ± 0.01
$N_{\rm obs}$	0	2	1	1
[idates / 0.005 -2 Ge√ 	fb^{-1} $\sqrt{s} = 7 \text{ TeV}$ Barrel - 9 2- B ⁰ signal window - B ⁰ signal window - 9 Signal window	CMS, 1.14 fb ⁻¹ √s = 7 TeV Endcap - ⊢ B ⁰ signal window ⊢ B ⁰ signal window	• Expected ULs BR($B_s \rightarrow \mu\mu$) < 1.8 x 10 ⁻⁸ @ 95% CL BR($B^0 \rightarrow \mu\mu$) < 4.8 x 10 ⁻⁹ @ 95% CL	
^{pug} 1 1 5 5 5 5 5 5 5 5 4 5 5 6 5 8 m _{μμ} [GeV]		• Observed ULs BR(B _s $\rightarrow \mu\mu$) < 1.9 x 10 ⁻⁸ BR(B ⁰ $\rightarrow \mu\mu$) < 4.6 x 10 ⁻⁹		ULs x 10 ⁻⁸ @ 95% CL 5 x 10 ⁻⁹ @ 95% CL
2/6/2012			19	

LHC-B ANALYSIS

LHCb Collaboration, Phys. Lett. B699, 330 (2011) LHCb Collaboration, arXiv 1112.1600 (2012) accepted by Phys. Lett. B

ANALYSIS PRINCIPLES

• Main backgrounds:

- Muons from two semileptonic B decays
- Contribution from photoproduction \rightarrow effectively removed with a cut on $p_T^{\mu\mu}$
- Muon from semileptonic B decay plus misidentified hadron and rare decays → sub-dominant

• Relying on MC as little as possible

- Pre-selection
- Use of a multivariate analysis to discriminate signal from background (likelihood → Boosted Decision Tree (BDT) in 2011)
- Signal extraction in 2D binning of invariant mass / BDT (6x4)
 - Signal mass, BDT likelihoods from data control samples
- Efficiency ratios from data or MC cross-checked with data

EFFICIENCY RATIOS

- Reconstruction efficiency ratio from MC
 - Main uncertainty from extra tracks in normalization channels (4%)
 - Cross-checked comparing efficiencies of $B^0 \to J/\psi \; K^{*0} \; / \; B^+ \to J/\psi \; K^+$
- Selection efficiency ratio from MC
 - Verified by comparing data/MC control samples → only significant discrepancy in muon IP distributions but negligible effect on ratio
- Trigger efficiency from data, by defining:
 - "TIS" events: events with at least one triggering object not matched to the signal candidate → mostly coming from decay products of the other B in the event
 - "TOS" events: events with signal matching the trigger

$$\epsilon^{\text{TRIG|SEL}} = \frac{N^{\text{TRIG}}}{N^{\text{SEL}}} = \frac{N^{\text{TIS}}}{N^{\text{SEL}}} \frac{N^{\text{TRIG}}}{N^{\text{TIS}}} = \epsilon^{\text{TIS}} \frac{N^{\text{TRIG}}}{N^{\text{TIS}}} \approx N^{\text{TIS&TOS}} / N^{\text{TOS}} \times \frac{N^{\text{TRIG}}}{N^{\text{TIS}}}$$

• Determined on J/ ψ as a function of the muon p_T and IP, and "applied" to the B_s sample (1-9%)

BDT INPUTS

- Variables
 - 1) Dimuon proper decay time
 - 2) Dimuon p_T
 - 3) Dimuon impact parameter
 - 4) DCA between the 2 muons
 - 5) Single-muon isolation (number of tracks forming a good vertex with the muon)
 - 6) B-candidate isolation (defined as in CMS)
 - 7) Minimum p_T of the 2 muons
 - 8) Minimum IP of the 2 muons
 - 9) Cosine of the lowest-p_T muon polarization angle

$$\cos P = \frac{p_{y,\mu 1} \, p_{x,B} - p_{x,\mu 1} \, p_{y,B}}{p_{\mathrm{T},B} \left(m_{\mu \mu} / 2 \right)}$$

- Training on MC
- Calibration with data (see next slides)
- N.B. No muon-ID requirements
- → can be calibrated with $B_{s,d} \rightarrow h^+h^-$ decays

COMBINATORIAL BDT PROBABILITY

R. Covarelli

- Background yields estimated using sidebands only and extrapolating to signal region in the 4 BDT bins
- Result checked using different fit functions (1, 2 exponential(s), linear... etc.)

SIGNAL BDT PROBABILITY

- Fit in the 4 BDT bins to control samples
 - 1) $B_{s,d} \rightarrow h^+h^-$ inclusive decays
 - 2) $B_{s,d} \rightarrow KK, K\pi, \pi\pi$ exclusive decays (PID used)
- Only use "TIS" events to remove bias from hadronic triggers
- Differences between 1) and 2) used as systematics on signal likelihood (3-10%)

SIGNAL MASS SHAPE

- Interpolating linearly charmonium and bottomonium mass resolutions
- 2) Using the hadronic samples in the previous slide ("TIS" events of $B_{s,d} \rightarrow h^+h^-$ inclusive and $B_{s,d} \rightarrow KK$, $K\pi$, $\pi\pi$)

method	$\sigma(B_s^0) \;({\rm MeV}/c^2)$	7	- Muon momentum scale
interpolation	$24.6 \pm 0.2_{\rm stat} \pm 1.0_{\rm syst}$		
$\begin{array}{c} B^0_{(s)} \to h^+ h^- \text{ inclusive} \\ B^0_{(s)} \to h^+ h^- \text{ exclusive} \end{array}$	$\begin{array}{c} 23.7 \pm 0.4_{\rm stat} \pm 1.5_{\rm syst} \\ 23.5 \pm 0.2_{\rm stat} \pm 1.3_{\rm syst} \end{array}$	~	- Variation of "physical" background (3-body B decays)

PEAKING BG AND NORMALIZATION

- B_{s,d} → h⁺h⁻ decays are also used to estimate peaking background from double muon mistag
 - $N_{B^0} = 5.0 \pm 0.9$ $N_{B^0_s} = 1.0 \pm 0.4$ in the whole BDT range
 - BDT distribution assumed to be the same as the signal
- Normalization factors averaged over the 3 control samples

 $\begin{aligned} \alpha^{\text{norm}}_{B^0_s \to \mu^+ \mu^-} &= (8.38 \pm 0.74) \times 10^{-10} \\ \alpha^{\text{norm}}_{B^0 \to \mu^+ \mu^-} &= (2.20 \pm 0.11) \times 10^{-10} \end{aligned}$

- Including uncertainties on:
 - Fitted yields
 - BRs
 - Reconstruction, selection and trigger efficiency ratios

RESULTS

B_S: CMS/LHC-B COMBINATION

Observed limits:

CMS and LHCb Collaborations LHCb-CONF-2011-047 CMS-PAS-BPH-11-019 (2011)

- CMS: $BR(B_s \rightarrow \mu\mu) < 1.9 \times 10^{-8} @ 95\% CL$
- LHCb: $BR(B_s \rightarrow \mu\mu) < 1.5 \times 10^{-8} @ 95\% CL (0.30 fb^{-1}, preliminary)$
- Combination using CL_s method (only significant common systematics: f_s / f_d)
- Combined limit:
 - ► BR(B_s $\rightarrow \mu\mu$) < 1.1 x 10⁻⁸ @ 95% CL
 - p-values for hypotheses of:
 - Background only: 8%
 - Background + SM signal: 55%
 - Background + 5.6 x (SM signal) : 0.3%

(CLOSE) FUTURE PERSPECTIVES

- Dotted blue lines indicate current integrated luminosity
- Two experiments expected to provide similar ULs (2 ÷ 3 x SM, assuming no analysis improvements) → big advantage from combination
- Results of both likely to be presented at winter conferences

(LESS CLOSE) FUTURE PERSPECTIVES

2012 run

- LHC possibly running at 8 TeV (~15% increase in bb cross-section) → Chamonix workshop taking place now
- <u>LHCb</u>: maintaining absolute priority on $B_{s,d} \rightarrow \mu^+\mu^-$
- <u>CMS</u>: also considered as a "benchmark channel"
 - Possible improvements in analysis (e.g. move to multivariate techniques)
 - Detailed studies ongoing, especially for trigger
 - Double-muon HLT with DCA cut and offline analysis checked to be almost insensitive to pile-up
 - "Displacement" requirements verified to be very efficient on control samples \rightarrow room for application to $B_s \rightarrow \mu\mu$ before raising p_T thresholds

CONCLUSIONS

- The LHCb (CMS) experiment has searched for the rare decays $B_{s,d} \rightarrow \mu^+\mu^-$ in data samples of 0.37 (1.14) fb⁻¹
 - Analogies in analysis technique: normalize to modes with similar signature and well-known BRs
 - Differences in:
 - Background composition: due to different rapidity regions and pile-up conditions
 - Signal selection: cut-and-count vs. multivariate analysis
- Single best world limits from LHCb
- Statistical combination of the results yields:

 $BR(B_s \rightarrow \mu\mu) < 1.1 \times 10^{-8} @ 95\% CL$

- Results with full 2011 statistics will be the first thorough test of SM
- For B_d we are not quite yet there...