

Marcello Rotondo (INFN Padova)

On Behalf of the SuperB Collaboration

INFN

Outline

- Introduction
- |V_{cb}|
 - Inclusive & Exclusive
 - Open Issues
- |*V*_{ub}|
 - Inclusive & Exclusive
 - Tensions
 - NP Solution?
- Summary

$|V_{cb}|, |V_{ub}|$ and the UT

- New Physics search in the flavor sector require <u>precise</u> & <u>redundant</u> measurements of <u>sides</u> and <u>angles</u> of the Unitarity Triangle
- $|V_{cb}|$ and $|V_{ub}|$ special role in the UT:
 - Accessible from Tree Level process,
 - Free of NP
 - Fix two sides of the UT

• R_u is te side opposite to β

- Direct interplay with $sin(2\beta)$

V_{cb}, V_{ub} and New Physics

- Indirect constraints to NP
- Some UT constraints strongly affected by $|V_{cb}|$ and $|V_{ub}|$:
 - $-\mathcal{B}(B \to \tau \nu) \propto f_B^2 \cdot |V_{ub}|^2$ - $\boldsymbol{\varepsilon}_{\kappa}$ affected by $|V_{cb}|$

 $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) \propto |V_{cb}|^4$ $\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) \propto |V_{cb}|^4$

- Direct search for NP ?
 - LR theoretical models could affect the b \rightarrow u ℓ v transitions
 - Double Charged Higgs can affect the Cabibbo Favored decays $B \rightarrow D^{(*)} \ \tau v$

Semileptonic B decays: |V_{cb}|

• Large BF, only one hadronic current:

$$d\Gamma = \boxed{\Gamma_0 \cdot \mathcal{F}(q^2, M_x, p_\ell)} \cdot \left(1 + \sum_n \left(C_n \left(\frac{\Lambda_{QCD}}{m_b}\right)^n\right)\right)$$

Free quark decay $\ll |V_{cb}|$

Perturbative + non perturbative corrections

 $q^2 = (p_\ell + p_\nu)^2$

 p_{X}

<u>Exclusive decays</u> $\mathbf{B} \rightarrow \mathbf{D}/\mathbf{D}^* \ell \mathbf{v}$:

rements

Weasu

molemental

- QCD predictions of Form Factor required to parameterize hadronic effects
- Lattice QCD, LCSR...

<u>Inclusive decays</u> $B \rightarrow X_c \ell v$:

- QCD corrections to parton level decay rate rely on Heavy Quark Symmetry + OPE
- Need perturbative and non-perturbative OPE corrections from data:
 - Global fit of M_X and p_t moments

B

 $M_x = p_x^2$

٧e

$|V_{cb}|$ From Inclusive $B \rightarrow X_c \ell v$

► Use hadronic tag $\mathbf{B}_{tag} \rightarrow \mathbf{D}^{(*)}\mathbf{Y}$ (Y=n π , $m\pi^0$, pK_s , qK), to reduce combinatorial and reconstruct M_{χ} , with good resolution

B $D(*) \ell v \& |V_{cb}|$

• For the $B \rightarrow D \ell v$

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} \cdot K_D(w) \cdot G^2(w)$$

- Fit also the slope of the FF, together with a global normalization
- Exclusive $B \rightarrow D^* \ell v$
 - Non trivial form factors
 - Need a fit on angular distribution
- Extrapolate to w=1 and extract:
 - $G(1)|V_{cb}|$ (together with slope ρ^2 of the
 - $F(1)|V_{cb}|$ (together with ρ^2 , R_1 and R_2)
- G(1) and F(1) from theory: LQCD

 $w = \frac{M_B^2 + M_{D*}^2 - M_{D*}}{2M_B M_{D*}}$

 $\eta_{\text{QED}} \mathcal{G}(w = 1) = 1.007 \times (1.074 \pm 0.018 \pm 0.016)$ $\eta_{\text{QED}} \mathcal{F}(w = 1) = 1.007 \times (0.908 \pm 0.005 \pm 0.016)$

V _{cb} analyses

- $B \rightarrow D\ell v$
- Reconstruct B $D\ell v$ on the recoil of a B_{reco} sample
 - Reduced background (\uparrow S/N)
 - Fully exploit kinematic constraints (\uparrow resolution)
 - Avoid neutrino reconstruction
- $B \rightarrow D^* \ell v$
- Untagged: signal is very clean
 - Require a multidimentional fit
 - The D** and the soft pion are important issues

 $B \rightarrow Dhv$ $B \rightarrow D^* hv$ $B \rightarrow D^{**}hv$

BB + aa fake lepton

b)

-0.5

1.24 < w < 1.30

 $D^0 \ell v$

w>1.54

417 fb⁻¹

B⁻

 $B \rightarrow D \ell^{+} V$

 $B \rightarrow D^* \ell^* v$

World Average: HFAG2010, BaBar and Belle are in perfect agreement and dominate the average!

		V _{cb} x10 ³	ρ^2
D	39.1 ± 1.3	3 ± 0.9	1.20 ± 0.06
D*	38.64 ± 0.0	64 ± 0.71	1.21 ± 0.05

B $D^* \ell^* v$

 World Average: HFAG2010, BaBar and Belle are in perfect agreement and dominate the average!

	V _{cb} x10 ³	$ ho^2$
D D*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 1.20 \pm 0.06 \\ 1.21 \pm 0.05 \end{array}$

Smaller total error are possibile extrapolating to w' > 1 Quenched calculation exists: Tantalo et al. Unquenched will be ready soon (LATTICE2011)

Issues with |V_{cb}|

- Inclusive-Exclusive discrepancy
 - becaming important!
 - B→Dℓv is a useful cross checks: compatible with both
 - improvements expected in the near future B→Dℓv
 - Error on Inclusive is reliable and it's expected to decrease
 - Exclusive F(1) ?
- Inclusive-Exclusive saturation problem:

$Br(B^0 \rightarrow X_c \ell v) = 10.14 \pm 0.14 \%$

(
B ⁰ →D*ℓν	Dlv	D** <i>tv</i>	???*
~5.0%	~2.1%	~1.4%	

∆=1.6 ± 0.3 %

- 3 body decay of the D**
- Multipion emission?
- Other resonances?

Semileptonic B decays: |V_{ub}|

• Only one hadronic current:

$$\Gamma(B \to \pi/X_u \ell \nu) = |V_{ub}|^2 \mathcal{F}^2(q^2, M_x, p_\ell)$$

<u>Exclusive decays</u> $\mathbf{B} \rightarrow \pi/\rho \ell v$:

- QCD predictions of Form Factor required to parameterize hadronic effects
- Lattice QCD, LCSR...

<u>Inclusive decays</u> $\mathbf{B} \rightarrow \mathbf{X}_{u} \ell v$:

- QCD corrections to parton level decay rate
- Need perturbative and non-perturbative corrections
 - 4 approaches BLNP, DGE, GGOU, ADFR
 - Non-pert. parameters (m_c , m_b , μ_{π}^2) from $B \rightarrow X_c \ell v$

(and $B \rightarrow X_s \gamma$)

 $M_X = p_X^2$

Neubert et al PRD72, 073006 (2005) Gardi et al JHEP0601, 097 (2006) Gambino et al JHEP0710, 058 (2007) Aglietti et al EPJC 59, 831 (2009)

$|V_{ub}|$ From Inclusive $B \rightarrow X_u \ell v$

- ► Large background from $B \rightarrow X_c \ell v$:
- Kinematics to extract the signal (lepton endpoint, $M_X < M_D,...)$

Use hadronic tag $B_{tag} \rightarrow D^{(*)}Y$ to reduce combinatorial and reconstruct M_X , q^2 and $P_+ = E_X - p_X$ with good resolution

$|V_{ub}|$ From Inclusive $B \rightarrow X_u \ell v$

Veto $B \rightarrow D(*) \ell v$ with Kaons, soft pions, and missing mass

D** fraction constrained from control samples

8th Meeting on B Physics, 6 Feb 2012

$|V_{ub}|$ From Inclusive $B \rightarrow X_u \ell v$

Inclusive: uncertainties

- Uncertainties dominated by theoretical error
- Recent calculation at NNLO (plugged in BLNP)
 - Test frameworks studying spectra!
 - Ongoing work on SIMBA ($|V_{\mu\nu}|$ global fit)

- Detector effects not relevant
- Dominant experimental systematic is due to the modeling of signal
 - Resonant and not-resonant contribution
 - Important systematics for both inclusive and exclusive determination of $|V_{\mu\nu}|$

Exclusive $|V_{ub}|$ with $B \rightarrow \pi \ell \nu$

- <u>Untagged analysis</u>: reconstruct π +e/ μ
- Neutrino from the rest of the event

$$m_{ES} = \sqrt{E_{beam}^{*2} - \mathbf{p}_{\pi\ell\nu}^{*2}}$$
$$\Delta E = E_{\pi\ell\nu}^* - E_{beam}^*$$

- Background reduced with q²-dependent cuts
- S/N = 0.09
- m_{ES} - ΔE fit to $\pi^+ \ell v$
- two analysis: 6 or 12 bins of q²

Fitted signal events: - π⁺: 11778 ± 435 Using 422 fb⁻¹

8th Meeting on B Physics, 6 Feb 2012

M.Rotondo

Exclusive $|V_{ub}|$ with $B \rightarrow \pi \ell \nu$

- <u>Untagged analysis</u>: reconstruct π +e/ μ
- Neutrino from the rest of the event

$$m_{ES} = \sqrt{E_{beam}^{*2} - \mathbf{p}_{\pi\ell\nu}^{*2}}$$
$$\Delta E = E_{\pi\ell\nu}^* - E_{beam}^*$$

M.Rotondo

Untagged $B \rightarrow \pi^+ \ell \nu$

- Precise experimental determination of the Form-Factor shape
- Combined fit to FNAL/MILC lattice calculations and data
- Untagged + Tagged measurements
 - $-|V_{ub}|=(3.19 \pm 0.29) \cdot 10^{-3}$
- Only Untagged measurements
 - $|V_{ub}| = (3.28 \pm 0.30) \cdot 10^{-3}$
- <u>9% uncertainty!</u>
- Error budget:
 - 2% from total rate
 - 4% from q² shape
 - 8% from FF normalization

Comments

- B-Factory era: <u>untagged</u> measurements give best measurements •
 - Very high efficiency
 - But large background due combinatorics from other B and from $B \rightarrow X_{\mu} \ell v$ _ bakground, very similar to the signal

 10^{4}

- SuperB: will use mainly <u>tagging</u> (B_{reco} or SL)
 - Small efficiency
 - Possible to apply loose cuts (es: low momentum cut)
 - Reduce model dependence and overall systematics

Measurements	Total BR($\mathbf{B} \rightarrow \pi^+ \ell \mathbf{v}$) · 10 ⁴
BaBar I	$1.41 \pm 0.05_{\text{stat}} \pm 0.07_{\text{syst}}$
BaBar II	$1.42 \pm 0.05_{\text{stat}} \pm 0.07_{\text{syst}}$
Belle	$1.49 \pm 0.04_{\text{stat}} \pm 0.07_{\text{syst}}$
Average Untagged	$1.44 \pm (0.03_{stat}) \pm 0.04_{syst}$
Average Tagged	$1.44 \pm 0.08_{\text{stat}} \pm 0.03_{\text{syst}}$

- To improve the high q² region is crucial to:
 - Understand the dynamics and composition of the $B \rightarrow X_{\mu} \ell \nu$
- Improvements expected from Lattice (<5% error ?)

Inclusive-Exclusive Puzzle

8th Meeting on B Physics, 6 Feb 2012

Inclusive-Exclusive Puzzle

- Despite progresses from Bfactories, the inclusive-exclusive discrepancy still present: 2.0-3.0σ differencies
- Crucial impact on UT constraints

BUT: Exclusive: Progress in QCD calculations, LQCD and LCSR Inclusive: Require advanced QCD calculation and precise mb

Puzzle solution: New Physics ?

• The <u>Right-Handed currents</u> could explain the differencies:

Chen, Nam Buras, Gemmler Lunghi, Soni

$$V_{ub}u_L \ W \ b_L \implies V_{ub}(u_L \ W \ b_L + \xi_{ub}^R \cdot u_R \ W \ b_R)$$

• Impact SL and Leptonic decays

$$\begin{split} |V_{ub}|_{\text{incl}} & \Longrightarrow \sqrt{1 + |\xi_{ub}^{R}|^{2}} |V_{ub}|_{\text{incl}} \\ |V_{ub}|_{\text{excl}} & \Longrightarrow |1 + \xi_{ub}^{R}| |V_{ub}|_{\text{excl}} \\ \text{BR}(B \to \tau\nu) & \Longrightarrow |1 - \xi_{ub}^{R}|^{2} \text{BR}(B \to \tau\nu) \end{split}$$

- Large RH contribution is required (~20%)
- An RH current does not significantly contradict existing observables
- Need to study specific observables

$$- B \rightarrow \rho \ell \nu ...$$

■B→ρℓν

- $B \rightarrow \rho \ell \nu$: non trivial test of V-A, V+A contribution
- ρ helicity distribution: affected by phase space
 - Require high statistics and good precision!

Untagged is affected by large bkg: - need tight cuts: **pl>2.0 GeV** - BaBar 350fb-1: 3300 ± 290 events with S/N~0.1

Approach |V_{ub}| differently ?

• Use MORE rare decays, very clean:

$$\frac{\mathrm{d}\Gamma(\bar{B}_{d} \to \rho \ell \nu)/\mathrm{d}q^{2}}{\mathrm{d}\Gamma(\bar{B}_{d} \to K^{*}\ell^{+}\ell^{-})/\mathrm{d}q^{2}} = \frac{|V_{ub}|^{2}}{|V_{ts}V_{tb}|^{2}} \cdot \frac{8\pi^{2}}{\alpha^{2}} \cdot \frac{1}{N(q^{2})} \cdot R_{B}$$
- R_{B} from 'Grinstein double ratio': CLEO-c
SuperB
$$\frac{f(B \to \rho \ell \bar{\nu})}{f(B \to K^{*}\ell^{+}\ell^{-})} \times \frac{f(D \to K^{*}\ell \bar{\nu})}{f(D \to \rho \ell \bar{\nu})}$$
LHC-b

• Use EVEN more Rare Decays, even more clean:

$$\frac{\frac{\Gamma(B_u \to \tau \nu)}{\Gamma(B_s \to \ell^+ \ell^-)}}{\frac{\Gamma(D_d \to \ell \nu)}{\Gamma(D_s \to \ell \nu)}} \sim \frac{|V_{ub}|^2}{|V_{ts} V_{tb}|^2} \cdot \frac{\pi^2}{\alpha^2} \cdot \left(\frac{f_B/f_{B_s}}{f_D/f_{D_s}}\right)^2$$

Summary

- Great improvements in the last decade
 - We have not reached the desired uncertainty for inclusive $|V_{ub}|$
 - Many puzzles still present and are now <u>more important!</u>
 - Will stay with us for a long time!
- Improve the SL knowledge, for both $|V_{cb}|$ and $|V_{ub}|$
 - Reduce systematics due to background signal and background composition
 - Fix the gap of the missing exclusive decays
- Use the large B_{reco} sample available:
 - Expect 5000/fb of tagged B meson!
 - SuperB boost \rightarrow higher acceptance: better v_{reco} and B_{reco} efficiency

8th Meeting on B Physics, 6 Feb 2012

$B \rightarrow D(*)\tau v$: motivation

- Similar to $B \rightarrow \tau v$, but:
- From annihilation to exchange
- From V_{ub} to V_{cb} : <u>not a rare decay!</u>
- (tau mass no negligible): 2 form factor for the D, 4 for the D*, but HQET relates the extra FF to the well measured FF in light leptons
- Look only at τ→ ℓvv (ℓ → e or μ) 3v in the final state → signal signature: large missing mass

Extract directly the ratio R

$$R(D^{(*)}) = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\nu_{\tau}\right)}$$

Reduce theoretical and experimental errors

- Use the hadronic tag $B_{tag} \rightarrow D^{(*)}Y$
 - Y is a combination of π , π^0 and K
 - Reduce combinatoric
- Reconstruct 4 signal decay channels (fitted together):

 $- D^{0}$. D^{*0} . D^{+} . D^{*+}

8th Meeting on B Physics, 6 Feb 2012

$B \rightarrow D(^*)\tau v$: fit

 Simultaneous 2D un-binned ML-fit of missing mass m_{miss}² and P_t to 4 signal samples and the D** control samples

M.Rotondo

 $B \rightarrow D^{**} \ell v$ poorly known

Select $D(*)\pi^0$ candidates

$B \rightarrow D(*)\tau v$: preliminary results

Mode	$N_{ m sig}$	$N_{ m norm}$	$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)}\tau\nu)(\%)$	$\Sigma_{\rm tot}$ ($\Sigma_{\rm stat}$)	. X
$D^0 \tau^- \overline{\nu}_{\tau}$	226 ± 39	1433 ± 46	2.13 ± 0.06	$0.422 \pm 0.074 \pm 0.059$	$0.96 \pm 0.17 \pm 0.14$	5.0(6.2)	· A
$D^{*0}\tau^-\overline{\nu}_{\tau}$	511 ± 48	6839 ± 90	1.36 ± 0.02	$0.314 \pm 0.030 \pm 0.028$	$1.73 \pm 0.17 \pm 0.18$	8.9 (11.9)	
$D^+ \tau^- \overline{\nu}_{\tau}$	139 ± 21	704 ± 29	2.19 ± 0.08	$0.513 \pm 0.081 \pm 0.067$	$1.08 \pm 0.19 \pm 0.15$	6.0(7.5)	
$D^{*+}\tau^-\overline{\nu}_{\tau}$	220 ± 23	2802 ± 56	1.25 ± 0.03	$0.356 \pm 0.038 \pm 0.032$	$1.82 \pm 0.19 \pm 0.17$	9.5 (12.1)	E C C C C C C C C C C C C C C C C C C C
$D\tau^-\overline{\nu}_{\tau}$	368 ± 42	2140 ± 54	2.15 ± 0.05	$0.456 \pm 0.053 \pm 0.056$	$1.04 \pm 0.12 \pm 0.14$	6.9(9.6)	Isospin 🗖
$D^* \tau^- \overline{\nu}_{\tau}$	730 ± 50	9639 ± 107	1.33 ± 0.07	$0.325 \pm 0.023 \pm 0.027$	$1.79 \pm 0.13 \pm 0.17$	11.3 (17.1)	constraints

