

B decays with neutrinos and implications on NP models

Guglielmo De Nardo University of Napoli "Federico II" and INFN

8th meeting on B Physics February 6th 2012, Genova, Italy

Outline

- Description of the tagging method
- Leptonic B decays
 - Experimental status
 - Implications on NP models (Charged Higgs search)
 - Extrapolation of Super Flavour Factories sensitivity
- $b \rightarrow s v v$ decays
 - Experimental status
 - Implication on NP models
 - Extrapolation of Super Flavour Factories sensitivity

Tagging method

Tagging method

- Weak signal signature
 - Decay with missing momentum (many neutrinos in the final state)
 - Lack of kinematics constraints in final state
- background rejection improved identifying the companion B
- Look for signal in the rest of the event
 - Expect to find nothing more than visible signal decay products and no extra activity in the calorimeter

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

Fully reconstructed hadronic and semileptonic modes

Fully reconstructed hadronic and semileptonic modes

Hadronic tags:

Full reconstruction of the B decay chain.

- Requirements on the quality of the tag are analysis dependent
- Possible to separate the "combinatorial" wrong tags from correct (peaking) tags in data

Semileptonic tags:

Recontruct Y = D-I pair.

Kinematics and known B meson energy determine the angle between B and Y.

$$\cos\theta_{B,Y} = \frac{2E_{B}E_{Y} - m_{B}^{2} - m_{Y}^{2}}{2|\vec{p}_{B}||\vec{p}_{Y}|}$$

Leptonic B decays

Leptonic B decays

• B \rightarrow lv very clean theoretically. The only uncertainty in the B decay constant fB

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B \quad \mathbf{B}^+ \underbrace{\int_{\mathbf{u}}^{\mathbf{b}} \mathbf{W}^+}_{\mathbf{u}} \underbrace{\int_{\mathbf{v}_{\mathbf{c}}}^{\mathbf{b}} \mathbf{W}^+}_{\mathbf{v}_{\mathbf{c}}} \underbrace{\int_{\mathbf{c}}^{\mathbf{b}} \mathbf{W}^+}_{\mathbf{v}_{$$

 Interesting probe physics beyond the SM, since also a charged Higgs can mediate the decay

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - \tan^2\beta \frac{m_B^2}{m_H^2})^2 \qquad \mathbf{B}^+ \underbrace{\int \mathbf{H}^+ \mathbf{H}^+$$

- B $\rightarrow \tau v$ used in global UT fits. B $\rightarrow \mu v$ out of reach of current B-factories
- Current measurements already exclude regions of M_H tan β plane

1+

Tipical signal selection and fit strategy

- Exploit kinematics and topology of in the signal side
 - Single charged tracks passing particle identification criteria
 - Requirement on CMS momentum for 1 prong modes
 - More constraints for $\tau \rightarrow \pi \pi^0 v$
- Most discriminating variable residual energy in the calorimeter (E_{extra})
 - Defined as the total energy of clusters passing a minimum energy requirement
 - Used in a maximum likelihood fit to determine the branching fraction
- E_{extra} distribution validated with the use of double-tagged events
- Simultaneous fit of the BF to E_{extra}

$$\mathcal{L}_k = e^{-(n_{s,k}+n_{b,k})} \prod_{i=1}^{N_k} \left\{ n_{s,k} \mathcal{P}_k^s(E_{i,k}) + n_{b,k} \mathcal{P}_k^b(E_{i,k}) \right\}$$

$$n_{s,k} = N_{B\overline{B}} \times \epsilon_k \times BF$$

Branching ratio with hadronic tags from BaBar

- Combinatorial background estimated from data, B⁺ background shape from MC
- Fit to E_{extra} distribution show an excess of events consistent with null hypothesis at 3.3 σ only

PRELIMINARY

$$\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

0.200 0.200 0.200 **DADAK** preliminary

∯₂₀₀ (b)

Ž 180

160

BADAR

preliminary

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

10

Branching ratio with hadronic tags from Belle

- Combinatorial background estimated from data
- Polynomial PDF for background, plus a peaking background form MC. Gaussian PDF for signal
- Excess of events excludes null hypothesis at 3.3 σ

$$\mathcal{B}(B \to \tau\nu) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$

Phys. Rev. Lett. 97, 251802 (2006) 449 M B pairs

> MC modelling of E_{extra} checked with double tags

Branching ratio with semileptonic tags from Belle

Excluding null hypothesis at 3.6 σ ۲

Phys. Rev. D 82,071101(R) (2010) 657 M B pairs

 55^{+21}_{-20}

 143^{+36}_{-35}

$$\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37} (\text{stat.})^{+0.29}_{-0.31}) \times 10^{-10}$$

4.7

14.3

 $\rightarrow \pi^- \nu_{\tau}$

Combined

-0.21

0.66 - 0.37

0.72 $1.80^{+0.69+0.36}_{-0.62}$

+0.38

1.54

Branching ratio with semileptonic tags from BaBar

Branching fractions summary

BABAR Hadronic tags $\mathcal{B}(B o au u) = (1.80^{+0.57}_{-0.54} \pm 0.26) imes 10^{-4}$ BABAR Semi-leptonic tags	arXiv:1008.0104[hep-ex]
$\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$	Phys. Rev. D 81, 051101(R) (2010)
BABAR combined	
$\mathcal{B}(B \to \tau \nu) = (1.76 \pm 0.49) \times 10^{-4}$	
BELLE Hadronic tags	
$\mathcal{B}(B \to \tau \nu) = (1.79^{+0.56}_{-0.49} (\text{stat.})^{+0.46}_{-0.51}) \times 10^{-4}$	Phys. Rev. Lett. 97, 251802 (2006)
BELLE Semi-leptonic tags	
$\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37} (\text{stat.})^{+0.29}_{-0.31}) \times 10^{-4}$	Phys. Rev. D 82, 071101(R) (2010)

HFAG average:

$\mathcal{B}(B \to \tau \nu) = (1.64 \pm 0.34) \times 10^{-4}$

HFAG does not use the 2006 Belle hadronic tag result

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

Tensions in the Global Fit

- Despite the striking overall consistency of the UT constraints some measurements show "tensions"
- Statistical fluctuations, unknown systematic uncertainties or hints of New Physics around the corner?

SuperB extrapolations

- The measurements will rapidly become systematically limited
- Expect a final precision of 4% (systematic dominated) well before 75ab⁻¹
- Caveat: 4% is half of the current systematic uncertainty
 - We assess most of systematics from data so it may be conservative From Alejandro Perez @ HQL 2010

Belle II extrapolations

- From Belle-II collaboration Physics Report (arXiv:1002.5012)
- Scale both the statistical and systematical uncertainty by luminosity
- Resulting in a 4% total uncertainty with the full dataset of 50 ab⁻¹

$B \rightarrow ev$, μv untagged analysis

- Monochromatic e or μ in B rest frame
- NO tag reconstruction but exploit kinematics and and topology of the rest of the event
- No significant signal seen

Phys. Rev. D 79,091101 (2009) Phys. Lett. B 647 (2007) 67

 $B \rightarrow ev$

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

Prospects of B \rightarrow µv in SuperB and Belle-II

- Scaling the statistical uncertainty of the untagged method with luminosity
- Assuming a moderate improvement in systematic uncertainty
- Both collaborations assume that an hadronic tagging will perform better

Both SuperB and Belle-II extrapolate a 5 σ observation within SM before 10ab⁻¹ Scaling to 75 ab⁻¹ expect SuperB to measure BF(B $\rightarrow\mu\nu$) at 4% Scaling to 50 ab⁻¹ expect Belle-II to measure BF(B $\rightarrow\mu\nu$) at 6%

SuperB $\mathbf{B} \rightarrow \tau \mathbf{v} + \mathbf{B} \rightarrow \mu \mathbf{v}$

- 75 ab-1 SuperB expected exclusion region on 2HDM parameters from "the impact of SuperB on flavour Physics" arXiv:0901.0512
- ATLAS constraint from arXiv:0901.0512

$B \rightarrow Iv\gamma$ with hadronic tags from BaBar

 Small excess for muon channel consistent with a 2.1 σ background fluctuation Phys. Rev. D 80, 111105 (2009)

	В→е∨γ	Β→μνγ	
Expected bkg	2.7 ± 0.3 ±0.4	$3.4 \pm 0.7 \pm 0.7$	
Observed events	4	7	
Signal efficiency	(7.8 ± 0.1 ±0.3) %	(8.1 ± 0.1 ±0.3)%	
FC confidence limit	<17 × 10 ⁻⁶	<26 × 10 ⁻⁶	
	<15 × 10 ⁻⁶		

Missing mass

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

Physics Motivation

- FCNC b → s transition in the SM by W box or Z penguin
- Small SM branching fraction
- 2v final state make it theoretically cleaner than other b → s modes
- Many new physics models may enhance the BF.

 \overline{q}

$B \rightarrow h vv$ experimental measurements

Mode	BaBar Had tag	BaBar SL tag	Belle Had tag	Belle SL tag
$K^+ \nu \nu$	✓	1	✓	
$K_{S} \nu \nu$		1	✓	
$K^{**} \nu \nu$	1	1	√	
$K^{*0} v v$	✓	✓	✓	
$\pi^+\nu~\nu$			✓	
$\pi^0 \nu \nu$			\checkmark	
$\rho^{+}\nu\nu$			\checkmark	
$\rho^0\nu\nu$			\checkmark	
φνν			1	

- Babar uses both tags Belle hadronic tags only
- Belle searched also for other non-kaonic modes

$B^+ \rightarrow K^+ \vee \vee$ and $B^0 \rightarrow K_s \vee \vee$ with SL tags from BaBar

- Multivariate analysis using bagged decision trees
- Trained on MC simulated signal and background events
- 26 (K⁺) and 38(K_s) variables exploiting missing energy, event shape, kinematics and quality of the tag reconstruction

ᡐᢗᢦᡐᡠᡬᡐᡐᡐᡬᡐᡐᡐᡐ

0.8

0.6

K⁺ Single BDT Output

 $B^+ \rightarrow K^+ \nu \nu$

Signal MC

Data

0.4

0.2

 10^{4}

10³

 10^{2}

10

(a)

Λ

Number of Events

Background MC

Phys. Rev. D 82, 112002 (2010) 459 M B pairs

Guglielmo De Nardo - B decays with (many) neutrinos - 8th meeting on B Physics - Feb 6th 2012, Genova, Italy

10⁻³

10⁻⁴

$B^+ \rightarrow K^+ \vee \nu$ and $B^0 \rightarrow K_s \vee \nu$ with SL tags from BaBar

Signal not significant, upper limits set to B($B^+ \rightarrow K^+ \nu \nu$) < 16 × 10⁻⁶ B($B^0 \rightarrow K^0 \nu \nu$) < 56 × 10⁻⁶

Zoom in the signal region

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

12

10

8

6

2

0 F

Average Number of Events

Data Background MC

Signal MC

1

$B \rightarrow h^{(*)} \vee \nu$ with hadronic tags from Belle

Phys. Rev. Lett. 99, 221802 (2007) 535 M B pairs

- Reconstruction of many final states in the rest of the event
 - K⁺, π⁺, K^{*+}(Kπ), K^{*0}(Kπ), K_s (π⁺π⁻), ρ⁺, ρ⁰, φ (KK)
- Selection requirements on kinematics and veto of extra charged particles or π^0 .
- Extra energy in the calorimeter defines the signal region
 - Signal region is residual calorimeter energy E_{extra} < 300 MeV
 - Sideband region 450 MeV < E_{extra} < 1.5 GeV
- Cut and count analysis
 - Background yield measured on the sideband and scaled using MC

Belle B \rightarrow h^(*) v v

No evidence of signal, upper limits set:

B(B → K⁺ $\nu \nu$) < 14 × 10⁻⁶ B(B → K^{*+} $\nu \nu$) < 140 × 10⁻⁶ B(B → K^{*0} $\nu \nu$) < 340 × 10⁻⁶

$B \rightarrow K^{(*)} \vee v$ with hadronic and semileptonic tags BaBar

Phys. Rev. D 78, 072007 (2008) 454 M B pairs

- Final state K^{*+} (K⁺ π^0 , K_s π^+) and K^{*0}(K π)
- Signal selection based on event shape, tag reconstruction quality, missing momentum
- Hadronic tag analysis combines the variables in a Neural net
- Signal yield extracted by a maximum likelihood fit to
 - Residual energy in the calorimeter (SL tag analysis)
 - NN distribution (hadronic tags)

B($B^+ \rightarrow K^{*+} \nu$) < 80 ×10⁻⁶

B($B^0 \rightarrow K^{*0} \nu$) < 120 ×10⁻⁶

SuperB and Belle-II extrapolations

- Benefits of lower boost and dectector improvements:
 - educated guesses by Belle-II point to 30-35% precision
 - Extrapolating performances of $B \rightarrow \tau v$ and assuming 70% improvements in reconstruction due to detector improvements
 - fast simulation studies by SuperB point to 15-20% precision

Model independent NP Constraints

 Model independent NP constraints by measurements of branching fraction and K* polarization
 Altmannshofer, Buras et al. JHEP 04, 022 (2009)

$$\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{\rm SM}|} ,$$

$$\eta = \frac{-\text{Re}\left(C_L^{\nu} C_R^{\nu*}\right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$$

- Leptonic B decays allow NP searches reasonably clean from theoretical complications
- B → τν BF is O(10⁻⁴): not rare but experimentally challenging. As today, we still lack a single publication with a 5σ observation.
- To overcome the weak decay signature fruitful tagging methods have been exploited
- 4 statistically independent measurements provide a combined result with 20% accuracy. Consistent but not perfectly fitting within SM
 - Statistical fluctuation, overlooked systematics or new physics?
- $B \rightarrow \mu \nu$ still below the sensitivity of current B-factories
- Future B-factories will measure both the B $\rightarrow \tau v$ and B $\rightarrow \mu v$ branching fractions precisely (much better than 5%)

Conclusions - B $\rightarrow K^{(*)}vv$

- FCNC b → s transitions are rare in the SM and new physics may enter enhancing the branching fraction
- Among them the $B \rightarrow K^{(*)}vv$ are the cleanest theoretically
- Experimentally they are as challenging as $B \rightarrow \tau v$
- At current B-factories we didn't see any significant signal. The B⁺ \rightarrow K⁺vv search being the most sensitive at 4x SM prediction
- At future B factories we expect to observe a SM signal with the full dataset
- Moreover with the hadronic tagging will be possible to perform angular analysis of B $\rightarrow K^*vv$ decays
- Combining several observables NP contributions may be constrained (a la UT fits)

Muon mode extrapolation on 2HDM

From Alejandro Perez @ HQL 2010

- From S.Robertson @ Miami workshop
 - Potential enhancement or suppression of branching fraction by H⁺

D'

• Precision measurements of both $B^+ \rightarrow \tau^+ v$ and $B^+ \rightarrow \mu^+ v$ feasible at SuperB (presumably $B \rightarrow D^{(*)} \tau v$ also, but not yet studied)

- Hadronic tag
- 1 prong τ decays, exactly three tracks, particle ID
- Requirements on q², track momentum, event shape, missing momentum, residual energy in calorimeter
- Expected background events: 65 ± 7
- Observed events: 47
- Signal efficiency 4.4 x 10⁻⁴
- No excess of events seen
- 90% CL upper limit set to BF < 3.3 10⁻³

Momentum transfer to lepton pair q²

- No evidence of signal in any mode
- Assessed 90% U.L. with Feldman-Cousins prescriptions

-					
Mode	Nobs	N _{side}	N_b	$\epsilon(\times 10^{-5})$	U.L.
$K^{*0} \nu \bar{\nu}$	7	16	4.2 ± 1.4	5.1 ± 0.3	$< 3.4 \times 10^{-4}$
$K^{*+} \nu \bar{\nu}$	4	18	5.6 ± 1.8	5.8 ± 0.7	$< 1.4 \times 10^{-4}$
$\rightarrow K_S^0 \pi^+$	1	7	2.3 ± 1.2	2.8 ± 0.3	
$\rightarrow K^+ \pi^0$	3	11	3.3 ± 1.4	3.0 ± 0.4	
$K^+ u ar{ u}$	10	60	20.0 ± 4.0	26.7 ± 2.9	$< 1.4 \times 10^{-5}$
$K^0 \nu \bar{\nu}$	2	8	2.0 ± 0.9	5.0 ± 0.3	$< 1.6 \times 10^{-4}$
$\pi^+ u ar{ u}$	33	149	25.9 ± 3.9	24.2 ± 2.6	$< 1.7 \times 10^{-4}$
$\pi^0 u ar u$	11	15	3.8 ± 1.3	12.8 ± 0.8	$< 2.2 \times 10^{-4}$
$ ho^0 u ar{ u}$	21	46	11.5 ± 2.3	8.4 ± 0.5	$< 4.4 \times 10^{-4}$
$ ho^+ u ar u$	15	66	17.8 ± 3.2	8.5 ± 1.1	$< 1.5 \times 10^{-4}$
$\phi u ar{ u}$	1	9	1.9 ± 0.9	9.6 ± 1.4	$< 5.8 \times 10^{-5}$