Theory overview on $B \rightarrow K^* \ell^+ \ell^$ and other rare decays

Nazila Mahmoudi CERN TH & LPC Clermont-Ferrand (France)

8th meeting on B physics Genova, February 7th, 2012

•O 0000000 000000000000 000000	000000	00	0	0

Outline

- Motivations
- Theoretical framework
- Definition of observables
- Few words on other rare decays
- Implications
 - Supersymmetry
 - Model independent analysis
- SuperIso
- Flavour Les Houches Accord
- Conclusion

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Motivations

- Flavour violation occurs only via W
- ► FCNC can only happen in loops → FCNC's are excellent probes for new physics!
- ► Most popular FCNC: b → sγ extremely useful and powerful but limited number of related observables
- b → sℓ⁺ℓ⁻ on the other hand gives rise to a variety of observables! main drawback: low statistics but promising experimental situation!

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Motivations

- Flavour violation occurs only via W
- ► FCNC can only happen in loops → FCNC's are excellent probes for new physics!
- ► Most popular FCNC: b → sγ extremely useful and powerful but limited number of related observables
- b → sℓ⁺ℓ⁻ on the other hand gives rise to a variety of observables! main drawback: low statistics but promising experimental situation!

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Motivations

- Flavour violation occurs only via W
- ► FCNC can only happen in loops → FCNC's are excellent probes for new physics!
- ► Most popular FCNC: b → sγ extremely useful and powerful but limited number of related observables
- b → sℓ⁺ℓ⁻ on the other hand gives rise to a variety of observables! main drawback: low statistics but promising experimental situation!

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000	000000	000000	00	0	0

Framework

- Effective field theory approach
- ► Separation of short-distance from long-distance QCD in an effective Hamiltonian → Particles with mass larger than the factorization scale are integrated out
- Calculation of the short distance quantities (Wilson coefficients)
- Calculation of matrix elements of local quark operators (form factors)
- ▶ For large recoil energy (small q²), QCD factorization (QCDF) and Soft Collinear Effective Theory (SCET)
- ▶ For small recoil energy (large q²), Operator Product Expansion (OPE) and Heavy Quark Effective Theory (HQET)

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NP}$
- Additional operators: $\sum_{i} C_{j}^{NP} \mathcal{O}_{j}^{NP}$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	0000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

\mathcal{O} perators

$$\begin{aligned} \mathcal{O}_{7} &= \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{R} b) F^{\mu\nu} & \mathcal{O}_{7}' &= \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{L} b) F^{\mu\nu} \\ \mathcal{O}_{8} &= \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{R} b) G^{\mu\nu a} & \mathcal{O}_{8}' &= \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{L} b) G^{\mu\nu a} \\ \mathcal{O}_{9} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \mu) & \mathcal{O}_{9}' &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \mu) \\ \mathcal{O}_{10} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu) & \mathcal{O}_{10}' &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu) \\ \mathcal{O}_{5} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \mu) & \mathcal{O}_{5}' &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \gamma_{5} \mu) \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \gamma_{5} \mu) & \mathcal{O}_{P}' &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \gamma_{5} \mu) \end{aligned}$$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Wilson coefficients

Wilson coeff.	description	SM	enhancement in models
C _{1,2}	charged current	YES	
C _{3,,6}	QCD penguins	YES	SUSY
С7,8	γ, g -dipole	YES	SUSY, large tan eta
C9,10	(axial-)vector	YES	SUSY
Cs,p	(pseudo-)scalar	$\sim m_I m_B / m_W^2$	SUSY, large tan β , R-parity viol.
$C'_{S,P}$	(pseudo-)scalar flipped	$\sim m_I m_s / m_W^2$	SUSY, R-parity viol.
$C'_{3,,6}$	QCD peng. flipped	$\sim m_s/m_b$	SUSY
C'7,8	γ, g -dipole flipped	$\sim m_s/m_b$	SUSY, esp. large tan eta
$C'_{9,10}$	(axial-)vector flipped	$\sim m_s/m_b$	SUSY
Ст, т5	tensor	negligible	leptoquarks

G. Hiller, arXiv:0911.4054

Wilson coefficients

- ▶ Wilson coefficients encode short-distance physics and possible NP effects
- Calculated at the matching scale $\mu = m_W$
- Perturbative expansion in powers of $\alpha_s(m_W)$
- Evolved down to scales $\mu \sim m_b$ according to the solution of the renormalization group equations

The Wilson coefficients are expanded as:

$$C_{i} = C_{i}^{(0)} + \frac{\alpha_{s}}{4\pi} C_{i}^{(1)} + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} C_{i}^{(2)} + O(\alpha_{s}^{3}),$$

 $C_i^{(0)}$: tree-level contributions, vanish for all operators but \mathcal{O}_2 $C_i^{(n)}$: *n*-loop contributions

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	0000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Matching

Matching each order of the Wilson coefficients C_i with the full theory Calculating higher order corrections is crucial in B-physics. For example, scale uncertainty of branching fraction of $B \to X_s \ell^+ \ell^-$:

NLO: 15-20% \rightarrow NNLO: 3-5%

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	0000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Renormalization Group Evolution

Evolving the $C_i^{eff}(\mu)$ from the matching scale $\mu \sim M_W$ to scale $\mu \sim m_b$ using the RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\text{eff}}(\mu)$:

$$\hat{\gamma}^{\text{eff}}(\mu) = rac{lpha_s(\mu)}{4\pi} \hat{\gamma}^{(0)\text{eff}} + rac{lpha_s^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)\text{eff}} + \cdots$$

 $\hat{\gamma}^{\rm eff}$ can be decomposed in perturbative series \rightarrow RGE performed order by order

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Form factors

The $B \to K^*$ matrix elements can be expressed in terms of seven form factors depending on q^2 :

$$\begin{split} \langle \bar{K}^{*}(k) | \bar{s} \gamma_{\mu} (1 - \gamma_{5}) b | \bar{B}(p) \rangle &= -i \epsilon_{\mu}^{*} (m_{B} + m_{K^{*}}) A_{1}(q^{2}) + i (2p - q)_{\mu} (\epsilon^{*} \cdot q) \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}} \\ &+ i q_{\mu} (\epsilon^{*} \cdot q) \frac{2m_{K^{*}}}{q^{2}} \left[A_{3}(q^{2}) - A_{0}(q^{2}) \right] + \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} p^{\rho} k^{\sigma} \frac{2V(q^{2})}{m_{B} + m_{K^{*}}} \end{split}$$

$$\begin{split} & \left(\bar{K}^{*}(k)|\bar{s}\sigma_{\mu\nu}q^{\nu}(1+\gamma_{5})b|\bar{B}(p)\right) = i\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}p^{\rho}k^{\sigma} \, 2\, T_{1}(q^{2}) \\ & + T_{2}(q^{2})\left[\epsilon_{\mu}^{*}(m_{B}^{2}-m_{K^{*}}^{2}) - (\epsilon^{*}\cdot q)(2p-q)_{\mu}\right] + T_{3}(q^{2})(\epsilon^{*}\cdot q)\left[q_{\mu} - \frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}(2p-q)_{\mu}\right] \end{split}$$

with $A_3(q^2) = \frac{m_B + m_{K^*}}{2m_{K^*}} A_1(q^2) - \frac{m_B - m_{K^*}}{2m_{K^*}} A_2(q^2)$ and $A_0(0) = A_3(0)$

Form factors are hadronic quantities \rightarrow non-perturbative calculation

 \rightarrow lattice calculation, but no full set of form factors available yet \rightarrow QCD sum rules on the light-cone (LCSR)

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	00000000	00000000000000000	000000	000000	00	0	0

Exclusive vs Inclusive

- The effective field theory approach serves as a theoretical framework for both inclusive and exclusive modes
- ▶ Wilson coefficients enter both inclusive and exclusive processes
- The calculational approaches to the matrix elements of the operators differ in both cases.
- Inclusive: dominated by the partonic contributions
- ▶ Non-perturbative effects are small
- Exclusive: simpler from the experimental point of view, but large non perturbative effects.

Intro duction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Observables

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	•0000000000000000	000000	000000	00	0	0

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-$ with $\bar{K}^{*0} \to K^- \pi^+$ on the mass shell is completely described by four independent kinematic variables:

- ▶ q²: dilepton invariant mass squared
- ▶ $heta_\ell$: angle between ℓ^- and the $ar{B}$ in the dilepton frame
- ▶ $heta_{K^*}$: angle between K^- and $ar{B}$ in the $K^-\pi^+$ frame
- \blacktriangleright ϕ : angle between the normals of the $K^-\pi^+$ and the dilepton planes

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Low q^2 vs high q^2

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Low q^2 vs high q^2

► Low q²

- reliable q^2 spectrum
- small 1/mb corrections
- sensitivity to the interference of C₇ and C₉
- high rate
- difficult to perform a fully inclusive measurements
- long-distance effects not fully under control
- non-negligible scale and m_c dependence
- ▶ High q²
 - negligible scale and m_c dependence due to the strong sensitivity to C_{10}
 - easier to perform a fully inclusive measurement (small hadronic invariant mass)
 - ▶ negligible long-distance effects of the type $B o J/\Psi X_s o X_s + X^{'} \ell^+ \ell^-$
 - q² spectrum not reliable
 - sizable 1/mb corrections
 - Iow rate.

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Differential decay distribution

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

with

$$J(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi) = J_{1}^{s} \sin^{2} \theta_{K^{*}} + J_{1}^{c} \cos^{2} \theta_{K^{*}} + (J_{2}^{s} \sin^{2} \theta_{K^{*}} + J_{2}^{c} \cos^{2} \theta_{K^{*}}) \cos 2\theta_{\ell}$$

+ $J_{3} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \cos \phi$
+ $J_{5} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \cos \phi + J_{6} \sin^{2} \theta_{K^{*}} \cos \theta_{\ell} + J_{7} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \sin \phi$
+ $J_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \sin \phi + J_{9} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \sin 2\phi$

and

$$4m_{\ell}^2 \leqslant q^2 \leqslant (M_B - m_{K^*})^2, \quad -1 \leqslant \cos\theta_{\ell} \leqslant 1, \quad -1 \leqslant \cos\theta_{K^*} \leqslant 1, \quad 0 \leqslant \phi \leqslant 2\pi$$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Transversity amplitudes

The functions J_{1-9} can be written in terms of the transversity amplitudes, $A_0,~A_\parallel,~A_\perp,~A_t,~{\rm and}~A_S$:

$$\begin{split} J_{1}^{s} &= \frac{(2+\beta_{\ell}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + (L \to R) \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left(A_{\perp}^{L} A_{\perp}^{R} * + A_{\parallel}^{L} A_{\parallel}^{R} * \right) \\ J_{1}^{c} &= |A_{0}^{b}|^{2} + |A_{0}^{b}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[|A_{\ell}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R} *) \right] + \beta_{\ell}^{2} |A_{S}|^{2} \\ J_{2}^{s} &= \frac{\beta_{\ell}^{2}}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{B}|^{2} + (L \to R) \right] \quad , \quad J_{2}^{s} = -\beta_{\ell}^{2} \left[|A_{0}^{L}|^{2} + (L \to R) \right] \\ J_{3} &= \frac{1}{2}\beta_{\ell}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{H}|^{2} + (L \to R) \right] \\ J_{4} &= \frac{1}{\sqrt{2}}\beta_{\ell}^{2} \left[\operatorname{Re}(A_{0}^{L} A_{\parallel}^{L} *) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L} A_{S} * + A_{\parallel}^{R} A_{S} *) \right] \\ J_{5} &= \sqrt{2}\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^{L} A_{\perp}^{L} *) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left[A_{0}^{L} A_{S} * + (L \to R) \right] \\ J_{7} &= \sqrt{2}\beta_{\ell} \left[\operatorname{Im}(A_{0}^{L} A_{\parallel}^{L} *) - (L \to R) + \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Im}(A_{\perp}^{L} A_{S} * + A_{\perp}^{R} A_{S} *) \right] \\ J_{8} &= \frac{1}{\sqrt{2}}\beta_{\ell}^{2} \left[\operatorname{Im}(A_{0}^{L} A_{\perp}^{L} *) + (L \to R) \right] \\ J_{9} &= \beta_{\ell}^{2} \left[\operatorname{Im}(A_{\parallel}^{L} A_{\perp}^{L} *) + (L \to R) \right] \end{split}$$

with $\beta_\ell = \sqrt{1 - \frac{4 m_\ell^2}{q^2}}$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Transversity amplitudes

$$A_{\perp,\parallel} = (H_{+1} \mp H_{-1})/\sqrt{2}, \qquad A_0 \equiv H_0$$

Transversity amplitudes at low q^2 , up to corrections of $O(\alpha_s)$:

$$\begin{split} A_{\perp}^{L,R} &= N\sqrt{2}\lambda^{1/2} \bigg[\left[(C_{9}^{\text{eff}} + C_{9}^{\text{eff}'}) \mp (C_{10} + C_{10}') \right] \frac{V(q^2)}{M_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7^{\text{eff}'}) T_1(q^2) \bigg] \\ A_{\parallel}^{L,R} &= -N\sqrt{2} (M_B^2 - m_{K^*}^2) \bigg[\left[(C_{9}^{\text{eff}} - C_{9}^{\text{eff}'}) \mp (C_{10} - C_{10}') \right] \frac{A_1(q^2)}{M_B - m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} - C_7^{\text{eff}'}) T_2(q^2) \bigg] \\ A_0^{L,R} &= -\frac{N}{2m_{K^*}\sqrt{q^2}} \bigg\{ \bigg[(C_{9}^{\text{eff}} - C_{9}^{\text{eff}'}) \mp (C_{10} - C_{10}') \bigg] \bigg[(M_B^2 - m_{K^*}^2 - q^2) (M_B + m_{K^*}) A_1(q^2) - \lambda \frac{A_2(q^2)}{M_B + m_{K^*}} \bigg] \\ &+ 2m_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \bigg[(M_B^2 + 3m_{K^*}^2 - q^2) T_2(q^2) - \frac{\lambda}{M_B^2 - m_{K^*}^2} T_3(q^2) \bigg] \bigg\} \\ A_t &= \frac{N}{\sqrt{q^2}} \lambda^{1/2} \bigg[2(C_{10} - C_{10}') + \frac{q^2}{m_\ell} (C_P - C_P') \bigg] A_0(q^2) \\ A_S &= -2N\lambda^{1/2} (C_S - C_S') A_0(q^2) \end{split}$$

where $N = \left[\frac{G_F^2 \alpha_{em}^2}{3 \cdot 2^{10} \pi^5 M_B} |V_{tb} V_{ts}^*|^2 \hat{s} \sqrt{\lambda} \beta_I\right]^{1/2}$ and $\lambda = M_B^4 + m_{K^*}^4 + q^4 - 2(M_B^2 m_{K^*}^2 + m_{K^*}^2 q^2 + M_B^2 q^2)$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Dilepton invariant mass spectrum

blue: uncertainties from form factors yellow: uncertainties from CKM matrix elements cyan: uncertainties from short-distance input red: uncertainties from subleading $1/m_b$ corrections

Bobeth et al., arXiv:1111.2558

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Forward backward asymmetry

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	0	0

Forward backward asymmetry zero-crossing

Reduced theoretical uncertainties

Lunghi and Soni, arXiv:1007.4015

$$q_0^2 \simeq -2m_b m_B rac{C_9^{\mathrm{eff}}(q_0^2)}{C_7} + O(lpha_s, \Lambda/m_b)$$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	0	0

CP asymmetry

$$A_{CP}(q^{2}) \equiv \frac{\frac{d1}{dq^{2}}(\bar{B} \to \bar{K}^{*}\ell^{+}\ell^{-}) - \frac{d1}{dq^{2}}(B \to K^{*}\ell^{+}\ell^{-})}{\frac{d\Gamma}{dq^{2}}(\bar{B} \to \bar{K}^{*}\ell^{+}\ell^{-}) + \frac{d\Gamma}{dq^{2}}(B \to K^{*}\ell^{+}\ell^{-})}$$

$$A_{CP}(q^{2}) = \frac{3}{4}(2A_{1}^{s} + A_{1}^{c}) - \frac{1}{4}(2A_{2}^{s} + A_{2}^{c}), \qquad A_{i}^{(a)}(q^{2}) \equiv (J_{i}^{(a)} - \bar{J}_{i}^{(a)}) / \frac{d(\Gamma + \bar{\Gamma})}{dq^{2}}$$

$$CKM \text{ suppressed} \rightarrow \text{ tiny in the SM}$$

6

 q^2 (GeV²)

Altmannshofer et al., arXiv:0811.1214

Non-factorizable graphs: annihilation or spectator-scattering diagrams Isospin asymmetry arises when a photon is radiated from the spectator quark

- ightarrow depends on the charge of the spectator quark
- ightarrow different for charged and neutral B meson decays

$$\frac{dA_{I}}{dq^{2}} \equiv \frac{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) - \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) + \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}$$

The SM is sensitive to C_5 and C_6 at small q^2 , but to C_3 and C_4 at larger q^2 Need to calculate higher order effects!

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Measurement of a significant deviation from zero in the range 2 $< q^2 < 7~{\rm GeV}^2$ may indicate New Physics

At $q^2 = 0$, the results of $B \to K^* \gamma$ is recovered.

Feldmann and Matias, JHEP 0301 (2003) 074

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Transverse asymmetries

The transverse asymmetries are written as:

$$\begin{aligned} A_{T}^{(1)}(q^{2}) &= \frac{-2\Re(A_{\parallel}A_{\perp}^{*})}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \\ A_{T}^{(2)}(q^{2}) &= \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \\ A_{T}^{(3)}(q^{2}) &= \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \\ A_{T}^{(4)}(q^{2}) &= \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|} \end{aligned}$$

where

$$A_i A_j^* \equiv A_{iL}(q^2) A_{jL}^*(q^2) + A_{iR}(q^2) A_{jR}^*(q^2) \quad (i, j = 0, \|, \bot)$$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Transverse asymmetries

Egede et al., arXiv:0807.2589

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	0	0

\mathcal{K}^* polarization parameter and fractions

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$
$$F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

 K^* polarization parameter:

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	0000000000000000	000000	000000	00	0	0

 $B
ightarrow K^* e^+ e^-$ vs. $B
ightarrow K^* \mu^+ \mu^-$

$$R_{K^*} \equiv \frac{\int_{4m_{\mu}^2}^{q^2_{\max}} dq^2}{\int_{4m_{\mu}^2}^{q^2_{\max}} dq^2} \frac{d\Gamma(B \to K^* \mu^+ \mu^-)}{dq^2}}{\frac{d\Gamma(B \to K^* e^+ e^-)}{dq^2}}$$

Within the SM: $R_{K^*}^{\rm SM} = 1 + O(m_\mu^2/m_b^2) = 0.991 \pm 0.002.$

Interesting beyond the SM to constrain New Physics.

Hiller, Krüger, hep-ph/0310219

Intro duction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Other rare decays

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000	00000	000000	00	0	0

More rare decays

- ▶ $\mathsf{BR}(B_s \to \mu^+ \mu^-)$
- ▶ $BR(B \rightarrow X_s \gamma)$
- ► $\Delta_{0-}(B \to K^*\gamma)$

Other interesting decays:

- $\blacktriangleright \ B \to \tau \nu$
- ▶ $B \rightarrow D \tau \nu$
- ▶ $D_s \rightarrow \tau \nu$
- $K \rightarrow \mu \nu$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	00000	000000	00	0	0

 $\mathsf{BR}(B_s o \mu^+ \mu^-)$

Effective Hamiltonian:

$$\mathcal{H}_{\mathrm{eff}} = -rac{4G_F}{\sqrt{2}} V_{tb} V^*_{ts} (\sum C_i(\mu) \mathcal{O}_i(\mu) + \sum C_{Q_i}(\mu) Q_i(\mu))$$

Important operators:

$$egin{aligned} \mathcal{O}_{10} &= rac{e^2}{(4\pi)^2} (ar{s} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \gamma_5 \ell) \ Q_1 &= rac{e^2}{16\pi^2} (ar{s}_L^lpha b_R^lpha) (ar{\ell} \,\ell) \ Q_2 &= rac{e^2}{16\pi^2} (ar{s}_L^lpha b_R^lpha) (ar{\ell} \gamma_5 \ell) \end{aligned}$$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

 $\mathsf{BR}(B_s \to \mu^+ \mu^-)$

Very sensitive to new physics, especially for large $\tan \beta$:

SUSY contributions in ${\sf BR}(B_s o \mu^+ \mu^-)$ can lead to an O(100) enhancement over the SM!

Large uncertainty from the decay constant $(f_{B_s})!$

Experimental results:

_HCb:
$${
m BR}(B_s o \mu^+ \mu^-) < 1.4 imes 10^{-8}$$
 at 95% C.L. ${
m Mathan}_{
m TXiv:1112.1600}$

CMS:
$${
m BR}(B_s o \mu^+ \mu^-) < 1.9 imes 10^{-8}$$
 at 95% C.L. arXiv:1107.5834

Combined LHCb + CMS: ${\rm BR}(B_{\rm s}\to\mu^+\mu^-)<1.1\times10^{-8}$ at 95% C.L. LHCb-CONF-2011-047, CMS PAS BPH-11-019

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]}$$

$$P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right] + \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O}\left(\alpha_s^3(\mu_b)\right)$$

$$\begin{cases}
P^{(0)}(\mu_b) &= \left(C_7^{(0)\text{eff}}(\mu_b)\right)^2 \\
P_1^{(1)}(\mu_b) &= 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(1)\text{eff}}(\mu_b) \\
P_1^{(2)}(\mu_b) &= \left(C_7^{(1)\text{eff}}(\mu_b)\right)^2 + 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(2)\text{eff}}(\mu_b)
\end{cases}$$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]}$$

 $P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right]$ $+ \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right)$

$$\begin{cases}
P^{(0)}(\mu_b) &= \left(C_7^{(0)\text{eff}}(\mu_b)\right)^2 \\
P_1^{(1)}(\mu_b) &= 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(1)\text{eff}}(\mu_b) \\
P_1^{(2)}(\mu_b) &= \left(C_7^{(1)\text{eff}}(\mu_b)\right)^2 + 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(2)\text{eff}}(\mu_b)
\end{cases}$$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]}$$

$$P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right] \\ + \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right)$$

$$\begin{cases}
P^{(0)}(\mu_b) &= \left(C_7^{(0)\text{eff}}(\mu_b)\right)^2 \\
P_1^{(1)}(\mu_b) &= 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(1)\text{eff}}(\mu_b) \\
P_1^{(2)}(\mu_b) &= \left(C_7^{(1)\text{eff}}(\mu_b)\right)^2 + 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(2)\text{eff}}(\mu_b)
\end{cases}$$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

$$BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > E_0} = BR(\bar{B} \to X_c e\bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha_{em}}{\pi C} \left[P(E_0) + N(E_0) \right]$$
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]}$$

$$P(E_0) = P^{(0)}(\mu_b) + \alpha_s(\mu_b) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0, \mu_b) \right] \\ + \alpha_s^2(\mu_b) \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0, \mu_b) + P_3^{(2)}(E_0, \mu_b) \right] + \mathcal{O} \left(\alpha_s^3(\mu_b) \right)$$

$$\begin{cases}
P^{(0)}(\mu_b) &= \left(C_7^{(0)\text{eff}}(\mu_b)\right)^2 \\
P_1^{(1)}(\mu_b) &= 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(1)\text{eff}}(\mu_b) \\
P_1^{(2)}(\mu_b) &= \left(C_7^{(1)\text{eff}}(\mu_b)\right)^2 + 2C_7^{(0)\text{eff}}(\mu_b)C_7^{(2)\text{eff}}(\mu_b)
\end{cases}$$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	Framework	Observables	Other decays 0000●0	Implications	Superlso ○○	FLHA O	Conclusion O

$BR(B \rightarrow X_s \gamma)$

▶ Theoretical values for the SM: NNLO (Misiak & Steihauser '07): BR($\bar{B} \rightarrow X_s \gamma$) = (3.15 ± 0.23) × 10⁻⁴ or (Becher & Neubert '07): BR($\bar{B} \rightarrow X_s \gamma$) = (2.98 ± 0.26) × 10⁻⁴ or (Gambino & Giordano '08): BR($\bar{B} \rightarrow X_s \gamma$) = (3.30 ± 0.24) × 10⁻⁴

► Experimental values: HFAG: BR $(\bar{B} \rightarrow X_s \gamma) = (3.55 \pm 0.25) \times 10^{-4}$

Reduced scale dependence:

Introduction	Framework 000000000	Observables	Other decays 0000●0	Implications	Superlso 00	FLHA O	Conclusion O

 $BR(B \rightarrow X_s \gamma)$

- ▶ Theoretical values for the SM: NNLO (Misiak & Steihauser '07): BR($\bar{B} \rightarrow X_s \gamma$) = (3.15 ± 0.23) × 10⁻⁴ or (Becher & Neubert '07): BR($\bar{B} \rightarrow X_s \gamma$) = (2.98 ± 0.26) × 10⁻⁴ or (Gambino & Giordano '08): BR($\bar{B} \rightarrow X_s \gamma$) = (3.30 ± 0.24) × 10⁻⁴
- ► Experimental values: HFAG: BR $(\bar{B} \rightarrow X_s \gamma) = (3.55 \pm 0.25) \times 10^{-4}$

Reduced scale dependence:

Introduction	Framework 000000000	Observables 000000000000000000000000000000000000	Other decays 0000●0	Implications	Superlso 00	FLHA O	Conclusion O

 $BR(B \rightarrow X_s \gamma)$

- ▶ Theoretical values for the SM: NNLO (Misiak & Steihauser '07): BR($\bar{B} \rightarrow X_s \gamma$) = $(3.15 \pm 0.23) \times 10^{-4}$ or (Becher & Neubert '07): BR($\bar{B} \rightarrow X_s \gamma$) = $(2.98 \pm 0.26) \times 10^{-4}$ or (Gambino & Giordano '08): BR($\bar{B} \rightarrow X_s \gamma$) = $(3.30 \pm 0.24) \times 10^{-4}$
- ► Experimental values: HFAG: BR $(\bar{B} \rightarrow X_s \gamma) = (3.55 \pm 0.25) \times 10^{-4}$

Reduced scale dependence:

Intro duction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	0	0

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539 (2002) Bosch and Buchalla, Nucl. Phys. B621 (2002)

HFAG: $\Delta_{0-} = +0.052 \pm 0.026$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539 (2002) Bosch and Buchalla, Nucl. Phys. B621 (2002)

HFAG: $\Delta_{0-} = +0.052 \pm 0.026$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	0	0

$$a_{7}^{c} = \frac{C_{7}}{4\pi} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \Big(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8} \Big) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \Big(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8} \Big)$$

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539 (2002) Bosch and Buchalla, Nucl. Phys. B621 (2002)

HFAG: $\Delta_{0-} = +0.052 \pm 0.026$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B539 (2002) Bosch and Buchalla, Nucl. Phys. B621 (2002)

HFAG: $\Delta_{0-} = +0.052 \pm 0.026$

Nazila Mahmoudi

Genova, Feb. 7, 2012

Intro duction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Implications

Intro duction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	00000	00	0	0

Experimental results

LHCb-CONF-2011-038

Observable	q² interval	LHCb results	SM prediction
$\langle dBR(B ightarrow K^*\mu^+\mu^-)/dq^2 angle$	[1, 6]	$(0.39 \pm 0.06 \pm 0.02) imes 10^{-7}$	$(0.56 \pm 0.15) imes 10^{-7}$
$\langle dBR(B ightarrow K^* \mu^+ \mu^-)/dq^2 angle$	[14.18, 16]	$(0.59 \pm 0.10 \pm 0.03) imes 10^{-7}$	$(0.69 \pm 0.20) \times 10^{-7}$
$\langle A_{FB}(B ightarrow K^* \mu^+ \mu^-) angle$	[1, 6]	$-0.10 \pm 0.14 \pm 0.05$	-0.06 ± 0.03
$\langle A_{FB}(B ightarrow K^* \mu^+ \mu^-) angle$	[14.18, 16]	$0.50 \pm 0.09 \pm 0.03$	0.44 ± 0.11
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle$	[1, 6]	$0.57 \pm 0.11 \pm 0.03$	0.77 ± 0.04
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle$	[14.18, 16]	$0.33 \pm 0.11 \pm 0.04$	0.36 ± 0.17

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	00000	00	0	0

SUSY Implications

CMSSM, with $A_0 = 0$, tan $\beta = 50$ and $\mu > 0$

Random scan over m_0 , $m_{1/2}$

Comparison with the LHCb results, including theoretical uncertainties

preliminary results, Superlso v3.2+

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

SUSY Implications

CMSSM, with $A_0=0$, tan eta=50 and $\mu>0$

preliminary results, Superlso v3.2+

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Combined results

CMSSM, with $A_0 = 0$, tan $\beta = 50$ and $\mu > 0$

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Model independent analysis

 δC_7 , δC_8 , δC_9 , δC_{10} , δC_S , δC_P considered as real independent parameters

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Model independent analysis

 δC_7 , δC_8 , δC_9 , δC_{10} , δC_5 , δC_P considered as real independent parameters

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	0

Model independent analysis

 $\begin{array}{l} \text{Observables:} \\ \text{BR}(B \rightarrow X_s \gamma) \\ \Delta_0(B \rightarrow K^* \gamma) \\ \text{BR}(B_s \rightarrow \mu^+ \mu^-) \\ \text{BR}^{\text{low}}(B \rightarrow X_s \mu^+ \mu^-) \\ \text{BR}^{\text{high}}(B \rightarrow X_s \mu^+ \mu^-) \\ \text{BR}^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \\ \text{BR}^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \\ A_{FB}^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \\ A_{FB}^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \\ F_L^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \\ F_L^{\text{high}}(B \rightarrow K^* \mu^+ \mu^-) \end{array}$

preliminary results, Superlso v3.2+

see also: Hurth, Isidori, Kamenik, Mescia, Nucl. Phys. B808 (2009) 326 Descotes-Genon, Gosh, Matias, Ramon, JHEP 1106 (2011) 099 Altmannshofer, Paradisi, Straub, arXiv:1111.1257

Nazila Mahmoudi

Genova, Feb. 7, 2012

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	•0	0	0

SuperIso

- public C program
- dedicated to the flavour physics observable calculations
- various models implemented
- interfaced to several spectrum calculators
- modular program with a well-defined structure
- complete reference manuals available

http://superiso.in2p3.fr

FM, Comput. Phys. Commun. 178 (2008) 745
 FM, Comput. Phys. Commun. 180 (2009) 1579
 FM, Comput. Phys. Commun. 180 (2009) 1718

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	0.	0	0

SuperIso

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	00000000000000000	000000	000000	00	•	0

Flavour Les Houches Accord

Standard format for flavour related quantities, providing:

- A model independent parametrization
- ► A standalone flavour output in the FLHA format
- Based on the existing SLHA structure
- A clear and well-defined structure for interfacing computational tools of "New Physics" models with low energy flavour calculations
- That will allow different programs to talk and to be interfaced, and users to have a clear and well defined result that can eventually be used for different purposes

Involved people

F. Mahmoudi, S. Heinemeyer, A. Arbey, A. Bharucha, T. Goto, T. Hahn, U. Haisch, S. Kraml, M. Muhlleitner, J. Reuter, P. Skands, P. Slavich

For more information

 Official write-up: Comput. Phys. Commun. 183 (2012) 285-298 [arXiv:1008.0762]

Introduction	Framework	Observables	Other decays	Implications	Superlso	FLHA	Conclusion
00	000000000	000000000000000000000000000000000000000	000000	000000	00	0	•

Conclusion

- $B \to K^* \ell^+ \ell^-$ offers multiple sensitive observables
 - \rightarrow complementary information!
- Theory uncertainties under control
- With more data constraints will tighten!
- Great opportunities for LHCb
- ► further studies at future Super B → also the inclusive mode
- Important to combine different observables and constraints
 - \rightarrow find evidence for New Physics

