B→K*II (and related physics) at SUPP

John Walsh INFN, Pisa

8th Meeting on B Physics Genova, February 6-7, 2012

Outline

- Introduction/Motivations
- Phenomenology: notation
- $B \rightarrow X_s I^+ I^-$
 - general characteristics
 - observables
 - current results
- Expectations for SuperB
 - inclusive $B \rightarrow X_s I^+ I^-$
 - expected sensitivities
- Conclusions

Note on notation: SuperB will study many modes in the K(*)II family, including the inclusive process $B \rightarrow X_s I^+I^-$. I will often use $B \rightarrow K(*)II$ or $B \rightarrow X_s I^+I^-$ to indicate this whole family of channels.

2

Introduction/Motivations

 Flavour-changing neutral current process: prohibited at tree level in the Standard Model → New Physics contributions enter at same order as SM physics

- In many NP models, the SM particles in the loops are replaced by new heavy particles, new masses, new couplings → modify quantities that we can measure
 - Branching Fractions, CP and Isospin asymmetries, observables from angular distributions \Rightarrow more on observables in a bit

Introducing Wilson coefficients...

• Effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} [C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu)],$$

• Relevant operators for this physics:

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b) F^{\mu\nu}, \quad \mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b) (\bar{l}\gamma^{\mu}l), \quad \mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b) (\bar{l}\gamma^{\mu}\gamma_{5}l),$$

- The C_i are the Wilson coefficients, which are calculable perturbatively in SM and NP models
- C₇: coefficient of dipole operator. $|C_7|$ determined by $B(B \rightarrow X_s \gamma)$
- C₇, C₉, C₁₀ all affected by $B \rightarrow X_s I^+I^-$

SuperB Detector

- Expect similar performance to BaBar detector
- Reduced boost (βγ=0.23, was 0.56 in BaBar)
- Same decay time resolution (layer 0 of SVT)
- Somewhat increased efficiencies for B reco

$B \rightarrow X_s I^+I^-$: General characteristics

- Lepton pair in final state offers many more observables than $B \rightarrow X_s \gamma$
- Theory predicts observables as function of $q^2 \equiv m_{\ell\ell}^2$, so experiment aims to measure as function of $q^2 \rightarrow$ strong tool for revealing NP
- Very small BF: ~ $1.5 \times 10^{-6} \rightarrow$
 - current experimental results are limited to small statistics
 - most exp. focus has been on exclusive states: $\mathbf{B} \rightarrow \mathbf{K}^{(*)}\mathbf{I}^+\mathbf{I}^-$
- For the exclusive modes, $B \rightarrow J/\psi(\rightarrow l^+l^-)K(^*)$ is both a background, which is explicitly vetoed and a very valuable control sample which reduces the use of MC.

Characteristics of $B \rightarrow X_s I^+I^-$ Decays

$$q^2=m^2_{\ell^+\ell^-}\equiv s$$

- The overall shape of the $B \rightarrow K^{(*)}I^+I^-$ spectra is determined by the q²-dependence of $C^{9}_{eff}(q^2)$
- At $q^2=0$, $B \rightarrow K^*l^+l^-$ has a singularity (due to $B \rightarrow K^*\gamma$), while $B \rightarrow Kl^+l^-$ is finite at $q^2=0$.
- Resonances from B→J/ψK^(*) and B→ψ(2S)K^(*) decays are explicitly removed -- they form a very important large statistics control sample

8th Meeting on B Physics, Genova, February 6-7, 2012

Analysis techniques at e⁺e⁻ machines

- Fully reconstruct $IO B \rightarrow K^{(*)}I^+I^-$ final states
 - K^+ , K^0 s, $K^+\pi^-$, $K^+\pi^0$ and K^0 s π^+ paired with e^+e^- or $\mu^+\mu^-$
- Identify leptons and require $p_e > 0.3$ GeV and $p_{\mu} > 0.7$ GeV
- Require good charged particle ID for K, π
- Select $K^{0}_{s} \rightarrow \pi^{+}\pi^{-}$ and $\pi^{0} \rightarrow \gamma \gamma$
- Main background: leptons from semileptonic decays of both B's or a B and D meson in the same event
 - suppress with multivariate techniques: neural nets, boosted decision trees, etc.
 - event shape variables, vertexing and missing energy
 - optimize for each mode and for each bin of q²

Discriminating variables:

$$m_{ES} = \sqrt{E_{
m beam}^{*2} - p_B^{*2}}$$

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

$B \rightarrow X_s I^+I^-$: Observables

- The rich final state leads to several observables:
 - A_{FB}, the forward-backward lepton asymmetry
 - So, the AFB zero crossing: this observable has particularly low theoretical uncertainties, thanks to cancellations
 - **F**_L, the K^{*} longitudinal polarization fraction in $B \rightarrow K^*II$
 - $\mathbf{R}_{\mathbf{K}(*)}$, the ratio of $\mathbf{B} \rightarrow \mathbf{K}(*) \mu \mu / \mathbf{B} \rightarrow \mathbf{K}(*)$ ee
 - ACP the direct CP asymmetry
 - A₁ the isospin asymmetry
 - BF, measured in bins of q² most relevant for inclusive measurement
 - Additional "new" angular variables, A_T⁽²⁾, etc.

Lepton forward-backward asymmetry: AFB

- Angular variables have good sensitivity to NP
- K* longitudinal polarization F_L→ θ_K angle between K and B in K* rest frame

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_K} = \frac{3}{2}F_L\cos^2\theta_K + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K)$$

 Lepton forward/backward asymmetry A_{FB}→ θ_I angle between I⁺ (I⁻) and B (<u>B</u>) in I⁺I⁻ rest frame

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4} F_L (1 - \cos^2\theta_{\ell}) + \frac{3}{8} (1 - F_L) (1 + \cos^2\theta_{\ell}) + A_{FB} \cos\theta_{\ell}$$

 $\frac{A_{FB} \text{ zero crossing: SM}}{s_0 = (4.2 \pm 0.6) \text{ GeV}^2}$

John Walsh, INFN Pisa

Constraining Wilson coefficients with $B \rightarrow X_s I^+I^-$

- C₁₀ vs. C₉ plane
- Use exclusive and inclusive $B \rightarrow X_s I^+I^-$ data
- Two cases: $C_7 = C_7(SM)$ and $C_7 = -C_7(SM)$

8th Meeting on B Physics, Genova, February 6-7, 2012

Lepton flavour ratios

• With both lepton flavours measured, we can determine the lepton flavor ratios:

$$R_K \equiv \frac{B(B \to K \mu^+ \mu^-)}{B(B \to K e^+ e^-)} \qquad \qquad R_K^* \equiv \frac{B(B \to K^* \mu^+ \mu^-)}{B(B \to K^* e^+ e^-)}$$

- In the SM, R_K=1 and R_{K*}=0.75 (if pole region is excluded, R_{K*}=1), but these can be substantially altered in NP models (2HDM, presence of neutral Higgs boson)
- To date, Babar and Belle measure RK(*) values that are consistent with the SM

8th Meeting on B Physics, Genova, February 6-7, 2012

John Walsh, INFN Pisa

CP Asymmetry

• Define:
$$A_{CP} = \frac{B(\bar{B} \to \bar{X}_s \ell^+ \ell^-) - B(B \to X_s \ell^+ \ell^-)}{B(\bar{B} \to \bar{X}_s \ell^+ \ell^-) + B(B \to X_s \ell^+ \ell^-)}$$

- In SM, A_{CP} < 1% level, can be significantly enhanced with NP
- Charged modes and B→K⁺π⁻l⁺l⁻ are selftagging, no need for additional tags
- Current measurements from Babar and Belle consistent with A_{CP}=0 with rather larger errors.

Isospin Asymmetry

• Measure isospin asymmetry in bins of q2:

$$A_{I}^{i} = \frac{B_{i}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) - rB_{i}(B^{+} \to K^{(*)+}\ell^{+}\ell^{-})}{B_{i}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) + rB_{i}(B^{+} \to K^{(*)+}\ell^{+}\ell^{-})}$$

- where the index i refers to q² bin and $r = au_0/ au_+ = 1.071 \pm 0.009$
- In SM, A_I expected small (<15%), but with q² dependence at low q²

8th Meeting on B Physics, Genova, February 6-7, 2012

Isospin asymmetry results

• Babar (2009) measured a large value of A_1 in the low- q^2 region:

- Taking K*II and KII together, this is a 3.9σ effect.
- Belle's results are consistent with SM (and also with BaBar results)
- Need more data to sort this out (updated Babar measurement coming within weeks)

8th Meeting on B Physics, Genova, February 6-7, 2012

@SuperB: $B^0 \to K^{*0} \mu^+ \mu^-$ and more

• Goal: Explore fully the full landscape of $b \rightarrow s\ell^+\ell^-$ decays

- Both lepton flavors:
$$B \to K^* \mu^+ \mu^-$$

$$B \rightarrow K^* e^+ e^-$$
 (suited to e+e- machines)

- Both B⁰ and B⁺ decays: $B^0 \to K^{*0}\ell^+\ell^-$ (including: $K^{*0} \to K^0_S \pi^0$ $B^+ \to K^{*+}\ell^+\ell^ K^{*+} \to K^+\pi^0, K^0_S \pi^+$

Inclusive channel:
$$B \to X_S \ell^+ \ell^-$$

• can separate e, μ channels and B⁰/B⁺ decays

- The ability to explore all these channels gives access to a number of interesting observables that are sensitive to New Physics
 - several of which are not measurable at hadronic machines

Inclusive $B \rightarrow X_s l^+ l^-$

- Measurement of inclusive B→X_sI⁺I⁻ observables has long been a goal of Bfactories, but current results severely limited by statistics and are not really inclusive
- Large statistics @ SuperB will make inclusive B→X_sI⁺I⁻ a possibility by tagging with fully reconstructed hadronic (and semileptonic decays)
- Tag B gives much information on signal B: 4momentum, charge, B or Bbar, etc.
- Can also do (quasi) fully reconstructed semileptonic tags

$$B \to D^{(*)}X$$

$$\begin{array}{ccccc} D^{0} & \rightarrow & K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+}, \\ & & K^{0}_{s}\pi^{0}, K^{0}_{s}\pi^{+}\pi^{-}, K^{0}_{s}\pi^{+}\pi^{-}\pi^{0} \\ & & K^{+}K^{-}, \pi^{+}\pi^{-} \\ D^{*0} & \rightarrow & D^{0}\pi^{0}, D^{0}\gamma \end{array} \\ \hline X = n\pi^{\pm} + mK + p\pi^{0} + qK^{0} \\ & & n + m \leq 5, \quad m, p, q \leq 2 \end{array}$$

Precision SM predictions for inclusive $B \rightarrow X_s I^+I^-$

- SM BFs for exclusive modes suffer from ~30% uncertainties due to form factor uncertainties
- For inclusive decay:

- low q²:
$$B^{low}_{\mu\mu} = (1.59 \times 10^{-6})(1 \pm 0.07)$$

- high q²:
$$R^{high}_{\mu\mu} \equiv \frac{B(B \to X_s \ell \ell)}{B(B \to X_u \ell \nu)} = (2.29 \times 10^{-3})(1 \pm 0.13)$$

Furthermore, essentially all observables discussed can be measured in inclusive channel

SuperB: expected sensitivities

- With 75 ab⁻¹ we expect to accumulate quite large samples in all the relevant channels
- These statistics will permit very good measurements of the interesting observables

Channel	No. events (1000s)
B→K*µµ	10-15
B→K*ee	10-15
В→Кµµ	8-12
B→Kee	8-12
B→X₅II	6-9

More details: arXiv:1008:1541, arXiv:1109.5028

	Observable	Uncertainty	Theo. uncertainty
Inclusive Exclusive	A _{FB} (K*II)	0.04	0.02
	A _I (K*II)	0.02	~0.01
	A _{CP} (KII)	0.02	~0.01
	Rκ	0.04	<0.01
	R _{K*}	0.05	<0.01
	BF(XsII)	0.05	0.07
	R _{×s}	0.06	<0.01
	A _{CP} (XsII)	0.02	~0.01
	Aı(Xsll)	0.05	?
	A _{FB} (XsII)	0.04	?

Based on extrapolation of B-factory results. More refined studies using SuperB fast simulation are underway.

8th Meeting on B Physics, Genova, February 6-7, 2012

Pisa

Conclusions

- The b→sl⁺l⁻ transition provides an excellent "laboratory" to search for the effects of New Physics
- The B-factories (BaBar and Belle) have made a good start in exploring the physics of b→sl⁺l⁻, but the uncertainties remain large
- SuperB, with its very high statistics dataset, will measure a large set of observables that are sensitive to NP
 - many exclusive channels, with both lepton species
 - first measurements of the fully inclusive mode $B \rightarrow X_s I^+I^-$
- SuperB capabilities are largely complementary to those of LHCb (and its upgrade), which will focus primarily on $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, with even higher statistics
- Together with Belle 2 these experiments will fully explore the rich sector of b→sl⁺l⁻ physics