B⁰ -> K* | | RECENT RESULTS AND PERSPECTIVES AT LHCb

Francesco Polci (LPNHE, CNRS IN2P3, UPMC)

8th meeting on B physics Genova 07/02/2012

A SENSITIVE CHANNEL TO NEW PHYSICS!

FCINC *b->s* transition

- □ Mediated by electroweak penguin and box diagram in SM (*C7* at low q^2 and *C9* and *C10* Wilson coefficients at high q^2)
- \Box In SM: *BR*=(9.8 ± 2.1)*10⁻⁷
- Possible new physics contribution in the loops from right-handed currents and new scalar/pseudo-scalar operators.

□ Can probe the helicity structure of the decay through angular observables.

ANGULAR ANALYSIS: FORMALISM (1)

The decay is totally described as function of q^2 , θ_L , θ_K , ϕ :

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^{2}} \propto \left[I_{1}^{S} + I_{1}^{C} + (I_{2}^{S} + I_{2}^{C})\cos2\theta_{\ell} + I_{3}\sin^{2}\theta_{\ell}\cos2\phi + I_{4}\sin2\theta_{\ell}\cos\varphi + I_{5}\sin\theta_{\ell}\cos\phi + I_{6}\cos\theta_{\ell} + I_{7}\sin\theta_{\ell}\sin\phi + I_{8}\sin2\theta_{\ell}\cos\phi + I_{6}\cos\theta_{\ell} + I_{7}\sin\theta_{\ell}\sin\phi + I_{8}\sin2\theta_{\ell}\sin\phi + I_{9}\sin^{2}\theta_{\ell}\sin2\phi\right]$$

Applying the transformation $\phi \rightarrow \pi - \phi$ the red terms disappear, leaving those with sensitivity to physics parameters

Expliciting the I_i terms, which contain the θ_k dependence (with $F_T = 1 - F_L$):

$$\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \,\mathrm{d} \cos \theta_K \,\mathrm{d} \phi \,\mathrm{d} q^2} = \frac{9}{32\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} F_T (1 - \cos^2 \theta_K) + \frac{1}{4} F_T (1 - \cos^2 \theta_K) \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} A_T^2 F_T (1 - \cos^2 \theta_\ell) (1 - \cos^2 \theta_K) \cos 2\phi + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell + A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\phi \right]$$

ANGULAR ANALYSIS: FORMALISM (3)

Forward-backward asymmetry of θ_{L} distribution

- well predicted in q^2 range 1-6 GeV^2
- zero crossing point evaluated theoretically with almost no hadronic uncertainties:
 4.36+0.33-0.31 GeV² in SM

$$A_{\rm FB}(q^2) = \frac{\int_0^1 \frac{\partial^2 \Gamma}{\partial q^2 \partial \cos \theta_{\rm L}} \,\mathrm{d} \cos \theta_{\rm L} - \int_{-1}^0 \frac{\partial^2 \Gamma}{\partial q^2 \partial \cos \theta_{\rm L}} \,\mathrm{d} \cos \theta_{\rm L}}{\int_0^1 \frac{\partial^2 \Gamma}{\partial q^2 \partial \cos \theta_{\rm L}} \,\mathrm{d} \cos \theta_{\rm L} + \int_{-1}^0 \frac{\partial^2 \Gamma}{\partial q^2 \partial \cos \theta_{\rm L}} \,\mathrm{d} \cos \theta_{\rm L}} \,\mathrm{d} \cos \theta_{\rm L}$$

$$\Box \text{ Fraction of longitudinal } \mathcal{K}^{*0} \text{ polarization: } F_L = \frac{|A_0|^2}{|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2}$$

$$\Box \text{ Transverse asymmetry: } A_T^2 = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

In helicity amplitudes: $A_T^2 \approx -2\frac{A_R}{A_L}$

$$\Box A_{Im} = \frac{\text{Im}(A_{\parallel L}^* A_{\perp L}) - \text{Im}(A_{\parallel R}^* A_{\perp R})}{|A_0|^2 + |A_{\perp}|^2 + |A_{\parallel}|^2}$$

Possible reparameterization:
 $A_{FB} = \frac{3}{4}F_T A_T^{Re} = \frac{3}{4}(1 - F_L)A_T^{Re}$
 $A_{Im} = \frac{1}{2}F_T A_T^{Im} = \frac{1}{2}(1 - F_L)A_T^{Im}$

ANGULAR ANALYSIS: FORMALISM (4)

Integrating on
$$\phi$$
 and θ_{κ} : $\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_l \, \mathrm{d} q^2} = \frac{3}{4} F_{\mathrm{L}} (1 - \cos^2 \theta_l) + \frac{3}{8} (1 - F_{\mathrm{L}}) (1 + \cos^2 \theta_l) + A_{\mathrm{FB}} \cos \theta_l$

Integrating on
$$\phi$$
 and θ_L : $\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_K \, \mathrm{d} q^2} = \frac{3}{2} F_{\mathrm{L}} \cos^2 \theta_K + \frac{3}{4} (1 - F_{\mathrm{L}})(1 - \cos^2 \theta_K)$

These are the formulas used in the 2011 paper (arXiv:1112.3515 [hep-ex]).

They have: - no S-wave contribution

- no higher K^{*0} resonances tails
- no lepton mass term (threshold effect)

$B^{0} \rightarrow K^{*}ee \text{ vs } B^{0} \rightarrow K^{*}\mu\mu$

 $\square B^0 \rightarrow K^* ee$ has in principle same informations as $B^0 \rightarrow K^* \mu \mu$

 $B_{d} \qquad d \qquad K^{*} \qquad B_{d} \qquad \overline{b} \qquad \overline{u}, \overline{c}, \overline{t} \qquad \overline{s} \qquad K^{*} \qquad W^{*} \qquad W^{*} \qquad Y^{*} \qquad$

□ At low q^2 , the diagram with the photon is the dominant one => measurement of the photon polarization In SM photon polarization is A_R/A_L =0.04. If new physics?

□ In B⁰->K*ee no threshold effect (i.e. lepton mass can be neglected):
 => one can reach much lower q² values.

 \Box Focus on smaller q^2 region => can fold the θ_L angle to simplify the fit (no I_6)

□ Unfortunately the *B*⁰->*K***ee* channel in the hadronic collider environment is experimentally **more challenging** than the one with muons:

- trigger
- reconstruction
- bremssthralung recovery,
- background subtraction...

THE LHCb DETECTOR

Well working above design luminosity : $3 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

EXPERIMENTAL CHALLENGES

Control of the backgrounds

=> need efficient selection criteria providing good rejection.

 Understanding the biases induced by the geometrical acceptance on angular observables
 => need selection criteria designed to minimize such biases

□ Control of external sources of asymmetry:

- asymmetry in the detector (use magnet reversal)
- production asymmetry of *B* vs \overline{B} (few percent)

Analysis is performed in bins of q², each bin having different acceptances, backgrounds, expected distributions....need many events in each bin

□ Electron trigger and reconstruction for *B*-> *K***ee* channel

ACCEPTANCE EFFECTS

- Mainly due to geometry and reconstruction.
- **Requirements:**
 - $P(\mu) > 3 \text{ GeV}$ (=hits in the muon stations)
 - $P_T(\mu) > 300 MeV$
 - both affect the $\cos\theta_{L}$ acceptance.
- \Box The effects are symmetric around $\theta_{L} = \pi/2$
- □ This alters the measurement of A_{FB} , scaling its value
- There is no impact on the zero crossing point, but the gradient being less pronounced, the error on the zero point is larger.
- □ Analogously for $cos(\theta_{\kappa})$ but the acceptance is not symmetric due to the $K \pi$ mass difference

ACCEPTANCE CORRECTIONS

- Angular and q2 distributions are corrected for acceptance effects using weights from Monte Carlo simulation.
- □ The weights are determined event-byevent on the basis of the q^2 , θ_L , θ_K of the signal candidates.
- □ Most of the weights are ~1
- Control channels are used to verify the good agreement with simulations for:
 - Tracking efficiency
 - Hadron (mis-)identification probabilities
 - μ (mis-)identification probabilities
 - *P* and η distributions

BACKGROUND EFFECTS

Different background categories give different impact:

\Box Background from two μ coming from two different *B* decays

- => gives a symmetric shape on θ_{I}
- = has impact only on the error of A_{FB}

Background from two μ coming from a single B decay chain

 (one from the B, one from D for example)
 => asymmetric in θ_L, as one muon has larger P_T, so it simulates a forward event
 => has impact on the error and gives a bias on A_{FB}

Similarly for the *K*

 \Box Backgrounds from non resonant B^{0} -> $K\pi\mu\mu$ and higher K^{*0} resonances

TRIGGER AND SELECTION

Triggers: L0 => A single high pT muon HLT1 => A single high IP and high pT track HLT2 => Topology of the B_d decay is exploited No further biases on angular distributions introduced.

 \Box For selection impact parameter significances are used rather than p_{τ} cuts:

- more discriminating
- less biasing for the angular distributions

BOOSTED DECISION TREE

□ The Boosted Decision Tree is trained on 2010 data, a sample independent from the one used for the measurement.

Based on impact parameters, vertex and track quality, PID informations.

□ Training samples are

- *B*->*K***J*/ ψ for signal
- *B*->*K** $\mu\mu$ upper $m_{\kappa\pi\mu\mu}$ sideband for background

Durity: S/B~0.3 (as B factories)

PEAKING BACKGROUNDS

□ Peaking backgrounds:

- $B_s \rightarrow \phi \mu \mu$ if one K is misID as π
- $B_d \rightarrow K^* J/\psi$ if $\pi(K)$ is misID as μ and μ is misID as $\pi(K)$ (passing J/ψ veto)

□ Estimated reversing the mass hypothesis.

 \Box *B->K*µµ* with swapped *K* and π also taken into account in the fit

Residual peaking backgrounds after selection is ~3% of signal, of which ~0.7% could affect asymmetry (EPS 2011).

Further reduce to 1.8% with additional vetoes in the published result.

Source	Quantity	Signal Loss (%)	
$B_s \to \phi \mu^+ \mu^-$	2.3	0.1 FPS 201	1
$B^0 \to K^{*0} J/\psi$	0.7	0.1	
$B^0 \to K^{*0} \mu^+ \mu^-$	1.2	0.3	
Total	4.2	0.5	

FIT PROCEDURE AND VALIDATION ON $B_d \rightarrow K^* J/\psi$

- □ Signal PDFs:
 - 3D angular pdf of $\cos\theta_{\mu}$, $\cos\theta_{\kappa}$, q^2
 - double Gaussian for $m_{K\pi u u}$ PDF
- Background PDFs:
 - 2nd order polynomial for angles
 - Exponential for $m_{\kappa\pi\mu\mu}$
- Events are weighted to correct for acceptances
- A Bayesian approach is used to estimate the statistical error, with a flat prior over the physical region
- Results consistent with a simple counting approach (no angular distributions)
- \Box Fit validated on $B_d \rightarrow K^* J/\psi$ ~75 larger BR A_{FB} is consistent with 0 as expected $(900 < m_{K\pi} < 980 \text{ MeV/c}^2)$

cos 0

cos 0,

YIELDS PER q^2 BINS

SYSTEMATICS UNCERTAINTIES

Sources of uncertainties:

□ Data derived Monte Carlo corrections, varied within their uncertainties: - variation of PID performances, impact parameter resolution, track reconstruction efficiency, trigger p_T dependence

□ Monte Carlo statistics

Signal and background mass models

 \Box Background angular models for A_{FB} ad F_L

 \square BR(B_d -> $K^* J/\psi$) used in normalization (~4%)

Systematic uncertainty is currently O(30%) of the statistical uncertainty. Improvements are expected with larger data samples.

RESULTS AND COMPARISONS (EPS 2011: LHCb-CONF-2011-038)

- □ Branching fractions are normalized to $BR(B_d - K^* J/\psi)$
- □ Integrated luminosity: <u>~</u>0.309 fb⁻¹
- □ *LHCb* has the most precise measurements.
- □ In agreement with the SM predictions.
- **\Box** Large asymmetry at low q^2 not confirmed.
- □ Theory predictions from C. Bobeth et al., arXiv:1105.0376v2

UPDATED RESULTS: (1)

UPDATED RESULTS (2)

TABLE I. Central values with statistical and systematic uncertainties for $A_{\rm FB}$, $F_{\rm L}$ and $d\mathcal{B}/dq^2$ as a function of q^2 . The $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ signal and background yields in the $\pm 50 \,\text{MeV}/c^2$ signal mass window with their statistical uncertainties are also indicated, together with the statistical significance of the signal peak that is observed.

q^2	$A_{\rm FB}$	$F_{\rm L}$	$d\mathcal{B}/dq^2$	Signal	Background	Significance
(GeV^{2}/c^{4})			$(\times 10^{-7} c^4 / \text{GeV}^2)$	yield	yield	(σ)
$0.10 < q^2 < 2.00$	$-0.15 \pm 0.20 \pm 0.06$	$0.00 \ ^{+0.13}_{-0.00} \pm 0.02$	$0.61 \pm 0.12 \pm 0.06$	48.6 ± 8.1	16.2 ± 2.3	8.6
$2.00 < q^2 < 4.30$	$0.05 \ ^{+0.16}_{-0.20} \pm 0.04$	$0.77 \pm 0.15 \pm 0.03$	$0.34 \pm 0.09 \pm 0.02$	26.5 ± 6.5	15.7 ± 2.2	5.4
$4.30 < q^2 < 8.68$	$0.27 \ ^{+0.06}_{-0.08} \pm 0.02$	$0.60 \ ^{+0.06}_{-0.07} \ \pm 0.01$	$0.69 \pm 0.08 \pm 0.05$	104.7 ± 11.9	31.7 ± 3.3	12.4
$10.09 < q^2 < 12.86$	$0.27 + 0.11 = -0.13 \pm 0.02$	$0.41 \pm 0.11 \pm 0.03$	$0.55 \pm 0.09 \pm 0.07$	62.2 ± 9.2	20.4 ± 2.6	9.6
$14.18 < q^2 < 16.00$	$0.47 \begin{array}{c} +0.06 \\ -0.08 \end{array} \pm 0.03$	$0.37 \pm 0.09 \pm 0.05$	$0.63 \pm 0.11 \pm 0.05$	44.2 ± 7.0	4.2 ± 1.3	10.2
$16.00 < q^2 < 19.00$	$0.16 ^{+0.11}_{-0.13} \pm 0.06$	$0.26 \ ^{+0.10}_{-0.08} \pm 0.03$	$0.50 \pm 0.08 \pm 0.05$	53.4 ± 8.1	7.0 ± 1.7	9.8
$1.00 < q^2 < 6.00$	$-0.06 \ ^{+0.13}_{-0.14} \pm 0.04$	$0.55 \pm 0.10 \pm 0.03$	$0.42 \pm 0.06 \pm 0.03$	76.5 ± 10.6	33.1 ± 3.2	9.9

CONCLUSIONS

- □ The B⁰->K*II channel is extremely interesting for its sensitivity to new physics.
- **LHCb** has the largest sample of B^{0} ->K* $\mu\mu$ events: time for precise measurements has come.
- □ The *LHCb* measurements of A_{FB} , F_L and $d\Gamma/dq^2$ are already the most precise available. Errors are statistically dominated.

□ The large A_{FB} asymmetry in the low q² region hinted by previous experiments is not confirmed by LHCb

□ At the moment results are in agreement within the errors with the SM expectations.

NICE PERSPECTIVES AHEAD!

 \Box LHCb has collected $\sim 1 fb^{-1}$ of data and it will continue collecting data in 2012.

 \Box The full angular analysis with $1fb^{-1}$ is under preparation:

- Discussions on the set of physics parameters to measure are ongoing
- Consider the threshold effect
- Include a possible S-wave contribution
- Profit of more abundant control channels
- Improve the fittings procedure, systematics treatment

□ On a longer term scale:

- measure the *B*⁰->*K***ee* channel
- combine the results of B^0 ->K*ee and B^0 ->K* $\mu\mu$

THRESHOLD TERM FORMULAS

$$\frac{d\Gamma}{d\cos\Theta_{\kappa}d\cos\Theta_{\ell}d\phi} = \varepsilon\left(\cos\Theta_{\kappa}\right) \times \varepsilon\left(\cos\Theta_{\ell}\right) \times \left[I_{1}\left(\cos\Theta_{\kappa}\right) + I_{2}\left(\cos\Theta_{\kappa}\right) \times \left(2\cos^{2}\Theta_{\ell} - 1\right) + I_{3}\left(\cos\Theta_{\kappa}\right) \times \left(1 - \cos^{2}\Theta_{\ell}\right)\cos2\phi\right] + I_{6}\left(\cos\Theta_{\kappa}\right) \times \cos\Theta_{\ell} + I_{9}\left(\cos\Theta_{\kappa}\right) \times \left(1 - \cos^{2}\Theta_{\ell}\right)\sin2\phi\right]$$

$$\begin{split} I_{1s} &= \frac{3}{4} \left(1 - F_L \right) \times \left(1 + \frac{1}{3} \cdot \frac{4m_\ell^2}{q^2} \right) & I_{1c} = F_L \times \left(1 + \frac{4m_\ell^2}{q^2} \right) & F_L = \frac{|A_0|^2}{|A_0|^2 + |A_L|^2 + |A_1|^2} \\ I_1 &= I_{1s} \times \left(1 - \cos^2 \Theta_K \right) + I_{1c} \times \cos^2 \Theta_K \\ I_{2s} &= \frac{1}{4} \left(1 - F_L \right) \times \left(1 - \frac{4m_\ell^2}{q^2} \right) & I_{2c} = -F_L \times \left(1 - \frac{4m_\ell^2}{q^2} \right) & A_T^{(2)} &= \frac{|A_L|^2 - |A_1|^2}{|A_L|^2 + |A_1|^2} \\ I_2 &= I_{2s} \times \left(1 - \cos^2 \Theta_K \right) + I_{2c} \times \cos^2 \Theta_K \\ I_3 &= \frac{1}{2} \left(1 - F_L \right) \times A_T^{(2)} \times \left(1 - \frac{4m_\ell^2}{q^2} \right) \times \left(1 - \cos^2 \Theta_K \right) & A_T^{(Im)} &= \frac{2 \operatorname{Im} \left(A_{11L}^* A_{LL} + A_{1R}^* A_{LR} \right)}{|A_L|^2 + |A_1|^2} \\ I_6 &= 2 \sqrt{1 - 4 \frac{m_\ell^2}{q^2}} A_T^{(Re)} \left(1 - F_L \right) \times \left(1 - \cos^2 \Theta_K \right) & A_T^{(Re)} &= \frac{2 \operatorname{Im} \left(A_{11L} A_{LL}^* - A_{11R} A_{LR}^* \right)}{|A_L|^2 + |A_1|^2} \end{split}$$

PROFILE LIKELIHOOD CONTOURS -1

PROFILE LIKELIHOOD CONTOURS - 2

