

Charm Mixing and CPV measurements at Hadron Colliders

Walter M. Bonivento

INFN Cagliari

- 1. Experimental challenges of charm in HC (LHCb)
- 2. Mixing and indirect CPV
- 3. Direct CPV \rightarrow evidence at 3.5 σ in $\Delta A_{CP}(KK/\pi\pi)$
- 4. What's next in the line

- Hadron colliders we may talk about in charm physics are of course Tevatron and LHC
- But for charm mixing and CPV LHC means LHCb
- LHCb already presented some very interesting results
- LHC is taking over Tevatron for all measurement; by the end of this year we will make public all results on mixing and CPV both time dependent and time integrated with a sensitivity 10x Tevatron
- Tevatron is unfortunately not taking data anymore
- So I will mostly talk about LHCb (but add some reference to Tevatron results)

The LHCb detector

CERN LHC: pp machine with $\sqrt{s}=7$ TeV (due to the 2008 accident) Pseudo-rapidity coverage \rightarrow 1.9-4.9

Originally designed for b physics, but now is pursuing a wide charm physics program

10 19:49:24

46 Event 143858637 bld 19

Challenges and goodies of charm physics (in LHCb)

the indirect search for NP in B and K decays probe only down-quark couplings charm decays probe up-quark couplings: we of course do not know where NP might (if any) show up. Studying charm at LHCb would perform a more comprehensive search for NP

- at 7 TeV:
 - σ(ccbar) ≈ 6mb
 - σ(bbar) ≈ 0.3mb
 - σ(pp inelastic)≈60mb
- \rightarrow huge σ (ccbar) cross section
 - background from secondary charm from b already low from the start of the selection
 - and very favorable ratio to inelastic σ (only a factor of 10!)
 - \rightarrow high purity selections with few and soft IP, displaced vertex and p_T cuts
 - \rightarrow very large yields (the highest on the market)
- however due to lower D meson daughter \textbf{p}_{T} and IP wrt B mesons, trigger thresholds have to be kept low
 - → tough requirements for trigger, tracking, online and offline reconstruction, both for bandwidth and timing, and last but not least storage!
- we mostly concentrate on channels with charged tracks in the final state

2010 was a "learning phase" year with fast varying running conditions and luminosity at the end of it we collected 37pb⁻¹ and we were running at a pile-up of up to 2.5 in average (with the design being 0.4) but we coped well with it!

In 2011 we've been running with more steady conditions with

```
-pile-up of ≈1.5
```

-with up to L=4•10⁻³² cm⁻¹s⁻¹ (2x the design value but at 0.5x σ) with luminosity leveling

Overall we collected up to more than 1fb⁻¹ (while GPE collected about 5pb⁻¹)

5 * 10³ tagged
$$D^{*\pm} \rightarrow (D0 \rightarrow K^{\pm}K^{\mp}) \pi^{\pm}$$

3 * 10⁵ untagged $D^0 \rightarrow K^{-}\pi^{+}$ per pb⁻¹ (now we have >1fb⁻¹) !!

We are analyzing the 1fb⁻¹ sample (which allows us to have the largest c-meson and baryons sample of history) and we already got one surprise!!!!

Mixing

Time evolution of flavor states in the presence of strong and weak interaction with flavor changing interactions: $\sqrt{\frac{i}{1-\frac{i}{2}}}$

$i\frac{\partial}{\partial t} \begin{pmatrix} a \\ b \end{pmatrix} = H \begin{pmatrix} a \\ b \end{pmatrix}$	$= \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M_{22} - \frac{i}{2} \end{bmatrix}$	$\left[\begin{matrix} a \\ b \end{matrix} \right] \left[\begin{matrix} a \\ b \end{matrix} \right] = are$	es of H $\left B_{L,H}\right\rangle = p \left B^{0}\right\rangle \pm q \left \overline{B^{0}}\right\rangle$	with $\frac{q}{p} = \sqrt{\frac{M_{12}^2 - \frac{1}{2}\Gamma_{12}^2}{M_{12} - \frac{i}{2}\Gamma_{12}}}$
$x \equiv \frac{\Delta}{1}$	$\frac{m}{\Gamma} y \equiv \frac{\Delta\Gamma}{2\Gamma}$	$P(N^0 \rightarrow 1)$	$\overline{N^0}) = \frac{1}{2} \left \frac{q}{p} \right ^2 e^{-T} (\cosh \theta)$	f(x) = T T $f(x) = T T$
	$K^0/\overline{K^0}$	$D^0/\overline{D^0}$	$B^0_d/\overline{B^0_d}$	$B^0_s/\overline{B^0_s}$
τ (ps)	$89.58 \pm 0.05,$ 51160 ± 200	0.4101 ± 0.0015	1.530 ± 0.009	1.470 ± 0.027
Γ (s ⁻¹)	$5.59 imes 10^9$	2.4×10^{12}	$6.5 imes10^{11}$	$6.8 imes 10^{11}$
x	0.946 ± 0.002	0.0097 ± 0.0028	0.776 ± 0.008	26.1 ± 0.5
y	-0.9965	0.0078 ± 0.0019	$ y < 0.04, \ 90\%$ C.L.	[0.09, -0.03], 95% C.L.
	Ks, KL	slow mixing		fast mixing

$x \rightarrow$ frequency $y \rightarrow$ amplitude

2/7/12

ΙΝΓ

Experimental status: mixing

no mixing point excluded at 10.1σ x differs from 0 by 2.7σ y differs from 0 by 5.9σ

Theory: mixing

SM contribution expected to be dominated by long range non-perturbative effects: up to x and y to O(10⁻²) possible. Slight preference for |y| < |x| (x= $\Delta m/\Gamma$ and y= $\Delta \Gamma/2\Gamma$) NP can enhance short range box diagram contribution (which is 10⁻⁵ in SM)

Observables for mixing measurements:

1) $y_{CP} = \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1$ in absence of CPV is equivalent to y 2) time dependent ratio of WS/RS D⁰ \rightarrow K π decays \rightarrow yields x² and y' (rotated to x and y by the strong phase δ between RS and WS)

	Year	Exper.	y' (%)	$x'^{2} (imes 10^{-3})$	
	2007	CDF [14]	$0.85 {\pm} 0.76$	$-0.12 {\pm} 0.35$	-
_	المراجب والمراجب		and the second second second second	$D_0 > I_{c} = 0$	1.1.1.1.1.1

3) time dependent Dalitz to self conjugated final states $D^0 \rightarrow K_S \pi \pi \rightarrow yield x$ and y 4) WS/RS BR ($D^0 \rightarrow K^+ lv$) $\rightarrow yields x^2 + y^2$

5) correlated $\psi(3770)$ decays \rightarrow yield y,(x²+y²) and δ

Measurement of y_{CP} with 2010 data L=28pb⁻¹ arXiv:1112.4698

 $y_{CP}=y \cos \Phi - R_M x \sin \Phi$

in preparation to the measurement of mixing with wrong sign $D^0 \rightarrow K\pi$: with 2010 data only time-integrated measurement

At present no 5 σ measurement of mixing \neq 0; for sure we expect to do it with LHCb: scaling of $\sigma_{stat}(y_{CP})=0.03-0.04\%$ with 5fb⁻¹

- Need to determine lifetime acceptance in real data
 - Key ingredient to the method is an event by event based lifetime acceptance which takes trigger and selection into account: this is possible in LHCb since the lifetime bias is in the software trigger
 - results are used in the normalization of the PDF in the fitting procedure

CP Violation

- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Exactly how small is a matter of debate... but <few 10⁻⁴ looks as a reasonable recent estimate
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 - in singly-Cabibbo-suppressed modes O (few 10⁻³) possible (in particular as a post-diction now)
- Both can be enhanced by NP, in principle up to O(%)
- In LHCb we have now the statistics to make O(0.1-0.2%) measurements!

Measurement of indirect CPV

Measurement using 28 pb⁻¹ of 2010 data, <u>arXiv:1112.4698</u> using D* \rightarrow D⁰ π , D⁰ \rightarrow K⁺K⁻ decays.

 $A_{\Gamma} = \frac{\Gamma(D^0 \to KK) - \Gamma(\overline{D^0} \to KK)}{\Gamma(D^0 \to KK) + \Gamma(\overline{D^0} \to KK)} = \frac{1}{2} R_M y \cos \Phi - x \sin \Phi$

220k D⁰ \rightarrow K π events used to determine D⁰ lifetime τ =(410.3±0.9) fs, PDG:(410.1±1.5) fs Expected precision with 5fb⁻¹ \rightarrow 2*10⁻⁴

Experimental issues with time integrated CPV in LHCb

- Experimentally, we have to cope with fake asymmetries:
 - production asymmetries (pp collider)
 - detection asymmetries (different K+/K- interaction lengths, soft pion efficiency asymmetry)
 - backgrounds
- Moreover the dipole magnet makes the detector left-right asymmetric for + charge and charge particles
 - a localized detector inefficiency translates into a fake CPV asymmetry

1) we developed robust observables:

- Miranda technique for SCS decay $D^+ \rightarrow K^+ K^- \pi^-$
- difference of two CPV asymmetries in SCS decays into CP eigenstates $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$
- develop fiducial cuts to exclude kinematic zones leading to potentially high systematics effects

2) swap the magnetic field from time to time

• signal purity is a must \rightarrow excellent detector performance

D->KKπ: the method

- Model-independent search for CPV in Dalitz plot distribution
- Compare binned, normalized Dalitz plots for D⁺ and D⁻
 - Production asymmetry cancels completely after normalization.
 - Efficiency asymmetries that are flat across Dalitz plot also cancel.
- Method based on asymmetry significance (*)

$$\mathcal{S}_{CP}^{i} = \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2} N^{i}(D^{-})}} , \qquad \alpha = \frac{N_{\text{tot}}(D^{+})}{N_{\text{tot}}(D^{-})}$$

- In absence of asymmetry, values distributed as Gaussian (μ =0, σ =1)
- Figure of merit for statistical test: sum of squares of $S^i_{\ CP}$ is a $\chi 2$

(*) Phys. Rev. D80 (2009) 096006

See also BaBar: Phys.Rev. D78:051102 (2008); our 2010 dataset contains 10x more events, and is of comparable size of Belle analysis of $D \rightarrow \phi \pi$:(arXiv: 0807.4545) (2011 is another x30 !!)

Sensitivity to NP

- With no CPV, method does not produce a signal (good!)
- If we do see a signal, it will mean big CPV and thus new physics.

$Ds \rightarrow KK\pi$ control mode

LHCb 35pb⁻¹

CF mode \rightarrow expect no CPV

Results for $D \rightarrow KK\pi$

Binning	Fitted mean	Fitted width	χ^2/ndf	p-value (%)
Adaptive I	0.01 ± 0.23	1.13 ± 0.16	32.0/24	12.7
Adaptive II	-0.024 ± 0.010	1.078 ± 0.074	123.4/105	10.6
Uniform I	-0.043 ± 0.073	0.929 ± 0.051	191.3/198	82.1
Uniform II	-0.039 ± 0.045	1.011 ± 0.034	519.5/529	60.5

No evidence for CP violation in the 2010 dataset

W.M.Bonivento - Genova 2011

 $A_{CP}(D^0 \rightarrow KK)$ and $A_{CP}(D^0 \rightarrow \pi\pi)$

- Most precise measurement of CDF
- From A.Di Canto talk at Beauty 2011"
 - " World's largest sample of D0 \rightarrow h+h'– decays"

Combine the "raw" asymmetries of three different event samples to minimize systematic errors caused by the detector induced asymmetries:

$$\checkmark D^{\star} \to D^{0}\pi_{s} \to [h h] \pi_{s} \qquad A(hh^{\star}) = A_{CP}(hh) + \delta(\pi_{s})$$
cancel asymmetry due to π_{s}^{+}/π_{s}^{-}
different reconstruction efficiencies
$$\checkmark D^{\star} \to D^{0}\pi_{s} \to [K\pi] \pi_{s} \qquad A(K\pi^{\star}) = A_{CP}(K\pi) + \delta(\pi_{s}) + \delta(K\pi)$$
cancel asymmetry due to K^{+}/K^{-} + possible CPV
different interaction with matter + in $D^{0} \to K\pi$

$$\checkmark D^{0} \to [K\pi] \qquad A(K\pi) = A_{CP}(K\pi) + \delta(K\pi)$$

The physical A_{CP} could be extracted through the combination:

$$A_{ extsf{CP}}(hh) = A(hh^{\star}) - A(K\pi^{\star}) + A(K\pi)$$

 $\begin{array}{ll} A_{\mathsf{CP}}(D^0 \to \pi^+\pi^-) & [+0.22 \pm 0.24 \; (stat.) \pm 0.11 \; (syst.)]\% & A_{\mathsf{CP}}(D^0 \to K^+K^-) & [-0.24 \pm 0.22 \; (stat.) \pm 0.10 \; (syst.)]\% \\ & & 2/7/12 & & & \\ \end{array}$

 $\Delta A_{CP} = A_{CP} (D^0 \rightarrow KK) - A_{CP} (D^0 \rightarrow \pi\pi)^{1}$

$$\begin{split} A_{RAW}(f) &\equiv \frac{N(D^0 \to f) - N(\overline{D}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}^0 \to \overline{f})} \\ A_{RAW}(f)^* &\equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \overline{D}^0(\overline{f})\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \overline{D}^0(\overline{f})\pi^-)} \\ A_{RAW}(f) &= A_{CP}(f) + A_D(f) + A_P(D^0) \\ A_{RAW}(f)^* &= A_{CP}(f) + A_D(f) + A_D(f) + A_D(\pi_s) + A_P(D^{*+}) \\ Production asymmetry of D^0 \\ Detection asymmetry of soft pion \end{split}$$

For a two-body decay of a spin-0 particle to a selfconjugate final state, no D⁰ detector efficiency asymmetry, A(K⁻K⁺) = A($\pi^{-}\pi^{+}$) = 0

Look at difference in CP asymmetry between KK and $\pi\pi$: very robust against systematics

$$A_{RAW}(K^{-}K^{+})^{*} - A_{RAW}(\pi^{-}\pi^{+})^{*} = A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$

 $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$ receive contributions from both indirect CPV (universal) and direct CPV (final state dependent) \rightarrow taking the difference we are sensitive (almost) only to the direct CPV contribution

Kinematic binning

- Kinematic binning needed to suppress second-order effects of correlated asymmetries e.g. correlated variation of A_P and A_D with kinematics (pt, η of soft π)
 - Divide data into kinematic bins of (pT of D*+, η of D*+, p of soft pion, left/right hemisphere) -- 54 bins
 - Along similar lines:
 - split by magnet polarity (field pointing up, pointing down)
 - split into two run groups (before & after technical stop)
 - Fit final states $D^0 \rightarrow K^+ K^-$ and $\pi^+ \pi^-$ separately => 432 independent fits.

Result

$\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.})] \%$

significance 3.5σ

LHCb 620pb⁻¹

expected stat error with $5fb^{-1} \rightarrow 4*10^{-4}$

Stability of result vs data-taking runs

Stability of result on relevant LHC kinematic variables

28 p(π) MeV/c

Interpretation

- The discussion on weather this is NP or SM we leave it to theoreticians
- Papers appeared in arXiv since then...
- Direct CP violation in charm and flavor mixing beyond the SM, Gian Francesco Giudice, Gino Isidori, Paride Paradisi, http://arxiv.org/pdf/1201.6204v1
- LHCb ΔA_{CP} of D meson and R-Parity Violation, Xue Chang, Ming-Kai Du, Chun Liu, Jia-Shu Lu, Shuo Yang arXiv:1201.2565v1
- CP asymmetries in singly-Cabibbo-suppressed \$D\$ decays to two pseudoscalar mesons, Bhubanjyoti Bhattacharya, Michael Gronau, Jonathan L. Rosner arXiv:1201.2351v1
- Direct CP violation in two-body hadronic charmed meson decays, Hai-Yang Cheng, Cheng-Wei Chiang arXiv:1201.0785v1
- CP Violation and Flavor SU(3) Breaking in D-meson Decays, David Pirtskhalava, Patipan Uttayarat arXiv:1112.5451v1
- Relating direct CP violation in D decays and the forward-backward asymmetry in \$t\bar t\$ production, Yonit Hochberg, Yosef Nir arXiv:1112.5268v1
- On the size of direct CP violation in singly Cabibbo-suppressed D decays, Brod, Kagan, Zupan, _arXiv:1111.5000v2
- Implications of the LHCb Evidence for Charm CP Violation, Isidori, Kamenik, Ligeti, Perez arXiv:1111.4987v1
- -Can Up FCNC solve the \$ΔA_{CP}\$ puzzle?, Kai Wang, Guohuai Zhu arxiv:1111.5196v1
- -(ΔA_{CP})_{LHCb} and the fourth generation, A. N. Rozanov, M. I. Vysotsky arxiv:1111.6949v1

Interpretation

• A_{CP} of each final state may be written at first order as

$$A_{CP} \approx a_{CP}^{dir} \left(1 + y \cos \phi \frac{\langle t \rangle}{\tau} \right) + a_{CP}^{ind} \frac{\langle t \rangle}{\tau}$$

- where $\langle t \rangle$ is the average decay time (experiment dependent) and τ is the D^0 lifetime
- To good approximation the indirect asymmetry is universal, i.e. independent of the final state.
- ΔA_{CP} may be written as

$$\Delta A_{CP} \approx \Delta a_{CP}^{dir} \left(1 + y \cos \phi \frac{\overline{\langle t \rangle}}{\tau} \right) + \left(a_{CP}^{ind} + \overline{a_{CP}^{dir}} y \cos \phi \right) \frac{\Delta \langle t \rangle}{\tau}$$
$$\Delta X = X \left(K^+ K^- \right) - X \left(\pi^+ \pi^- \right) \text{ and } \overline{X} = \frac{X \left(K^+ K^- \right) + X \left(\pi^+ \pi^- \right)}{2}$$

• Interpretation of ΔA_{CP} depends on the experiment

Lifetime aceptance

- Lifetime acceptance differs between D0 \rightarrow K-K+ and D0 \rightarrow π-π+
 - − e.g. smaller opening angle → short-lived D0→K-K+ more likely to fail cut requiring daughters not to point to PV than D0→ π - π +
- Background-subtracted average decay time of D0 candidates passing the selection is measured for each final state, and the fractional difference with respect to world average D0 lifetime is obtained:

 $\Delta \langle t \rangle / \tau = [9.83 \pm 0.22(stat.) \pm 0.19(syst)]\%$

• indirect CP violation contribution to Δ ACP mostly cancel

New HFAG combination (with LHCb result)

 $a_{CP}^{ind} = (-0.019 \pm 0.232)$ and $\Delta a_{CP}^{dir} = (-0.645 \pm 0.180)$ %

Consistency with NO CP violation: 0.13%

(the slanted bands due to lifetime acceptances)

W.M.Bonivento - Genova 2011

- Beyond updating with 2011 statistics (>30x 2010) the above mentioned analyses of 2010 data and updating to the 1fb⁻¹ statistics the ΔA_{CP} analysis, we have under study:
 - − Direct CPV in $D^+ \rightarrow K^0_{S}h$
 - Direct CPV in Dalitz plot with $D^0 \rightarrow \pi \pi \pi \pi$
 - − T-odd correlations in D^0 →KKππ
 - Direct CPV in Dalitz plot in other 3-body Singly-Cabibbo-Suppressed D+ and $\rm D_{s}^{+}$ decays
 - The golden channel: Mixing and CPV with time dependent Dalitz analysis D⁰→K⁰_Shh
 - ΔA_{CP} with D⁰ from semi-leptonic b decays
 - − Direct CPV $\Lambda_c \rightarrow p\pi\pi$
 - − CPV in $\Lambda_c \rightarrow \Lambda \pi$, ΛK
- Main limitation: manpower...!
- + rare decays + spectroscopy (search for new resonances)

Conclusion

- LHCb has a very rich charm physics program ranging from mixing/CPV to rare decays and spectroscopy, mostly with decays to charged particles in the final state and is continuing the pioneering work done by CDF in the charm sector.
- With 2011 data (1fb⁻¹) we already have the world highest statistics in many channels
- We expect to collect 5fb⁻¹ up to 2017 (phase 1) and 50fb⁻¹ (2019-2029?) with the upgrade
- For many years to come, at least until 2018, LHCb will be (together with BES3) the leading experiment in the field: statistical sensitivity to many observables such to rule out NP contributions (e.g. some channels sensitive direct CPV)
- Still systematics such as production asymmetries in CPV and lifetime acceptance have to be treated with care and more new ideas on that need to be developed
- In general, we have not tried yet to address channels with neutrals in the final state but things are starting, though it is not guaranteed it will be competitive.
- Most channels with neutrinos and π^{0} 's remain peculiar to the e^e machines