### ATLAS Detector Overview.

### 12th Pisa Meeting on Advanced Detectors, 10 May 2012 Christoph Rembser (CERN)

ATLAS Detector Overview - 12th Pisa Meeting on Advanced Detectors, 21 May 2012

Christoph Rembser

## A brief word on the LHC











## The ATLAS Detector



## Hardware status (2011/2012)

### Before shutdown 2011/2012...

| Subdetector                      | # of Channels | Approximate Operational % |
|----------------------------------|---------------|---------------------------|
| Pixels                           | 80 M          | 96.4%                     |
| SCT Silicon Strip                | 6.3 M         | 99.2%                     |
| TRT Transition Radiation Tracker | 350 k         | 97.5%                     |
| LAr EM Calorimeter               | 170 k         | 99.8%                     |
| Tile Calorimeter                 | 9800          | 96.2%                     |
| Hadronic endca LAr Calorimeter   | 5600          | 99.6%                     |
| Forward LAr Calorimeter          | 3500          | 99.8%                     |
| LVL1 Calo Trigger                | 7160          | 99.9%                     |
| LVL1 Muon RPC Trigger            | 370 k         | 99.0%                     |
| LVL1 Muon TGC Trigger            | 320 k         | 100.0%                    |
| MDT Muon Drift Tubes             | 350 k         | 99.7%                     |
| CSC Cathode Strip Chambers       | 31 k          | 97.7%                     |
| <b>RPC Barrel Muon Chambers</b>  | 370 k         | 97.0%                     |
| TGC Endcap Muon Chambers         | 320 k         | 97.9%                     |

### ..and after (11 May 2012)

| Subdetector                      | # of Channels | Approximate Operational % |
|----------------------------------|---------------|---------------------------|
| Pixels                           | 80 M          | 95.9%                     |
| SCT Silicon Strip                | 6.3 M         | 99.3%                     |
| TRT Transition Radiation Tracker | 350 k         | 97.5%                     |
| LAr EM Calorimeter               | 170 k         | 99.9%                     |
| Tile Calorimeter                 | 9800          | 99.5%                     |
| Hadronic endca LAr Calorimeter   | 5600          | 99.6%                     |
| Forward LAr Calorimeter          | 3500          | 99.8%                     |
| LVL1 Calo Trigger                | 7160          | 100.0%                    |
| LVL1 Muon RPC Trigger            | 370 k         | 99.5%                     |
| LVL1 Muon TGC Trigger            | 320 k         | 100.0%                    |
| MDT Muon Drift Tubes             | 350 k         | 99.7%                     |
| CSC Cathode Strip Chambers       | 31 k          | 97.7%                     |
| <b>RPC Barrel Muon Chambers</b>  | 370 k         | 97.1%                     |
| TGC Endcap Muon Chambers         | 320 k         | 99.7%                     |

### ATLAS detector in good shape for the 2012 run!

ATLAS Detector Overview - 12th Pisa Meeting on Advanced Detectors, 21 May 2012

### Detector readiness - activities shutdown 2011/2012

#### Example Liquid-Argon calorimeter:

- 10 front-end boards repaired and 12 new LVPS installed:
- bad channels decreased from 385/182468 to 106/182468 (0.06%)

#### Example Tile Hadronic calorimeter:

- 45/256 on detector "drawers" opened for refurbishment
- 40/256 new low voltage power supplies replaced, reduce trip rates and noise
- bad cells: before shutdown 5% to 0.5% today

#### Example infrastructure:

- Cryogenics: NEW main compressor
- Maintenance cryogenics, gas, cooling, access systems and consolidation of the electrical system





### Detector readiness - activities shutdown 2011/2012

### Muon Spectrometer:

- Installation MDT EE (precision MS tracking at |η|~1.2):
  - ➡ Side C: completed, 31 modules
  - ➡ Side A: 5 EELs (completion 2013)



### New shielding at $|Z| \sim 7$ m:

 reduction of large plume of photons in Muon Spectrometer







# Data taking efficiency



- Recording efficiency kept high over the year despite increase in data-taking rates
- Data quality efficiency accounts for detector-specific problems
  - ➡ Some can be recovered/narrowed through reprocessing

# Data quality 2011

- Close to 100% detector uptime and good quality data during stable beams in 2011 for nearly • all subdetectors
  - LAr calorimeter suffered from noise bursts/HV trips, recovered to 97.5% after 2011 summer data-reprocessing campaign Same performance reached for heavy ion runs in 2011 for

| <b>ATLAS</b> 2011 p–p run                                                                                                                                                                                                                          |      |      |           |            |                |      |      |      |         |      |          |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|------------|----------------|------|------|------|---------|------|----------|--------|
| Inner Tracking Calorimeters                                                                                                                                                                                                                        |      |      |           |            | Muon Detectors |      |      |      | Magnets |      |          |        |
| Pixel                                                                                                                                                                                                                                              | SCT  | TRT  | LAr<br>EM | LAr<br>HAD | LAr<br>FWD     | Tile | MDT  | RPC  | CSC     | TGC  | Solenoid | Toroid |
| 99.8                                                                                                                                                                                                                                               | 99.6 | 99.2 | 97.5      | 99.2       | 99.5           | 99.2 | 99.4 | 98.8 | 99.4    | 99.1 | 99.8     | 99.3   |
| Luminosity weighted relative detector up time and good quality data delivery during 2011 stable beams in pp collisions at vs=7 TeV between March 13 <sup>th</sup> and October 30 <sup>th</sup> (in %), after the summer 2011 reprocessing campaign |      |      |           |            |                |      |      |      |         |      |          |        |

Near 100% quality also for Trigger (jet online reconstruction most affected by LAr noise)

|                                                                                                                                                                                             | L1   |      | HLT      |        |      |      |      |       |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|--------|------|------|------|-------|---------------------------|
| Muon                                                                                                                                                                                        | Calo | СТР  | electron | photon | muon | tau  | jet  | b-jet | missing<br>E <sub>⊤</sub> |
| 99.0                                                                                                                                                                                        | 100  | 99.8 | 99.3     | 99.3   | 100  | 99.9 | 98.6 | 99.9  | 99.3                      |
| Luminosity weighted relative relative fraction of good trigger data quality delivery during 2011 stable beams in pp collisions at $\sqrt{s}$ =7 TeV between 13 March and 30 October (in %). |      |      |          |        |      |      |      |       |                           |

#### **Overall, about 90% of recorded collisions are available for physics analysis**

ATLAS Detector Overview - 12th Pisa Meeting on Advanced Detectors, 21 May 2012

# Challenge: pile-up



50 ns bunch spacing (25 ns design) with higher than nominal bunch charges pushed in-time pile-up past expectations

A challenge for

- Tracking and vertexing
- ➡ Trigger
- Lepton isolation
- ➡ Jet energy scale/resolution
- Missing transverse energy reconstruction
- ➡ Reconstruction CPU time

zoom to interaction region (few cm)

 $Z \rightarrow \mu\mu$ , 20 reconstructed vertices, recorded September 2011

### Multiple interactions per bunch-crossing (2011)



ATLAS Detector Overview - 12th Pisa Meeting on Advanced Detectors, 21 May 2012

Christoph Rembser

# High pile-up 2012



# ATLAS trigger and DAQ



**CEST** Time

## Example for trigger in 2012

Level-1 menu: defined at L= 8x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> (8 TeV) for 75kHz with (~10KHz contingency)
Level-2:

⇒Pile-up insensitive selections for tau and e implemented in Level-2



# Tracking at high pile-up ( $\mu$ ~30)

Arbitrary Units

2400

2200

2000

1800

1600

1400

400F

200

TLAS Preliminary

- Comparison of tracks in random events between normal running and special high µ run (2011)
- Number of hits on tracks are constant even at pile-up of 30
  - but fakes will increase...



ATLAS Detector Overview - 12th Pisa Meeting on Advanced Detectors, 21 May 2012

Data, <u>=15

Data, <µ>=29

Data, <µ>=32

# Tracking tuning for 2012



5 10 15 20 25 30 35 Number of Vertices Strong reduction of combinatorial "fake" tracks caused by pile-up by applying "robust" cuts (only small efficiency loss)...



Number of reconstructed primary vertices

### Transition Radiation Tracker at 25 / 50ns

### Transition Radiation Tracker (TRT):

- gaseous detector with ~300000 drift tubes
- maximum drift time in 2mm tube:~40 ns
- highest TRT occupancy at high  $<\mu>$  (approaches 60% @ $<\mu>>$  40)

### TRT designed to operate at 25 ns bunch spacing

- ➡ timing information of single hits (leading edge) is measured with a precision better than I ns;
- ➡ no loss of information for tracking even at high occupancy;
- ➡ trailing edge information (max. 40ns late) of a hit is used for particle ID;
- ➡ minimal (<5%) impact on particle ID in case timing cuts on hits are required for very high  $<\mu>$ .



Note: occupancy

### Impact parameter resolution and b-tagging performance

d0 core width for data and simulation as function of  $\eta$  for tracks with  $pT\sqrt{(\sin\theta)} > 20$  GeV.

Light-jet rejection as function of the b-jet tagging efficiency for early tagging algorithms (JetProb and SVO) and for the highperformance algorithms (based on simulated top-antitop events)



## Muon performance

### High pile-up performance for $H \rightarrow ZZ \rightarrow 4I$ like selections:



## Clean and controlled muon spectrometer performance, even in high pile-up environment.

# Jet energy scale performance

Understanding detector performance basic ingredient of all physics analyses, Jet Energy Scale is one of the main systematics of precision measurements and searches



• Data/MC *in situ* Jet Energy Scale determined with **2% accuracy above 25 GeV** and constrains JES uncertainty down to 15 GeV

## $e/\gamma$ energy scale stability

• Electromagnetic calorimeter energy scale studied as a function of time and pile-up conditions using  $Z \rightarrow$  ee mass scale and E/p from  $W \rightarrow ev$  events



Good stability of the electron energy response with time and pile-up.

## Conclusions

- The excellent performance of the LHC allowed ATLAS to collect a substantial data set in 2011.
- The hard work of the ATLAS collaborators resulted in high data quality, high efficiency and a well understood detector.
- The 2012 run started successfully. Detectors, trigger, data acquisition, event reconstruction, computing and analysis are meeting the challenge of the increased luminosity and the increased pile-up.

### Looking forward to collect more data and to find new physics!

### More ATLAS talks & posters at this meeting

#### Atlas talks

- ➡ Francesca Pastore: Upgrade project and plans for the ATLAS detector and trigger
- ➡ Didier Ferrere: Overview of the ATLAS Insertable B-Layer (IBL) Project
- ➡ Frank Seifert: Upgrade plans for the ATLAS Calorimeters

#### **ATLAS posters**



- Sofia Maria Consonni: Tracking and Calorimeter Performance for Tau Reconstruction at ATLAS
- → Lucy Anne Kogan Determination of the jet energy scale uncertainty
- ➡ Federico Meloni: Track and vertex reconstruction in the ATLAS Experiment
- ➡ Karoline Elfriede Selbach: Neural network based cluster creation in the ATLAS silicon pixel detector
- ➡ Mario Sousa: Single hadron response measurements in ATLAS
- ➡ Mark Cooke: Monitoring radiation damage in the ATLAS Pixel Detector
- ➡ Andrea Favareto: Status of the ATLAS Pixel Detector at the LHC
- ➡ Peter Lundgaard Rosendahl: ATLAS Silicon Microstrip Tracker Operation and Performance
- ➡ Jonathan Stahlman: Advanced Alignment of the ATLAS Inner Detector
- Ludovica Aperio Bella: Status of the Atlas Liquid Argon Calorimeter and its Performance after two years of LHC operation
- ➡ Margret Fincke-Keeler: Upgrade plans for ATLAS Forward Calorimetry for the HL-LHC
- Steffen Staerz: Upgraded readout electronics for the ATLAS LAr Calorimeter at the High Luminosity LHC
- Fernando Carrio Argos: Upgrade for the ATLAS Tile Calorimeter readout electronics at the High Luminosity LHC
- ➡ Yesenia Hernandez Jimenez: The ATLAS Tile Calorimeter performance at LHC
- **Evelin Meoni: Performances of the signal reconstruction in the ATLAS Hadronic Tile Calorimeter**
- Djamal Boumediene: Calibration and Monitoring systems for the ATLAS Tile Hadron Calorimeter
- Antonio Sidoti: The ATLAS trigger system: performance and evolution
- ➡ <u>Matthew Tamsett:</u> Performance of the ATLAS jet trigger
- ➡ Andres Jorge Tanasijczuk: The ATLAS hadronic tau trigger
- ➡ Guido Volpi: A Fast Hardware Tracker for the ATLAS Trigger System

# Spare slides

### Reconstructed vertices vs interactions per bunch crossing

Average number of reconstructed primary vertices as a function of average number of pp interactions per bunch crossing measured for the data of 2011.



# Radiation damages seen?

- Example: Silicon strip detector SCT
  - Radiation damage indicated by leakage current it is exactly along the lines of the predictions. Change in depletion voltage for the SCT is very small, everywhere less than 10 V.





# Phase-0 (Installation 2013/2014)

#### **Major Improvements to Physics Capabilities**

- ➡ New insertable pixel b-layer (IBL) (drives shutdown schedule)
- Finish the installation of the EE muon chambers staged in 2003 +additional chambers in the feet (new electronics) and elevators region
- ➡ New small Be pipe

#### Consolidation and maintenance to preserve present performance

- ➡ New Aluminum beam pipes to prevent activation problem and reduce BG
- ➡ New pixel services (nSQP) (pending decision by mid 2012)
- $\rightarrow$  New evaporative cooling plant for Pixel and SCT + IBL CO<sub>2</sub> cooling plant
- ➡ Replace all calorimeter Low Voltage Power Supplies
- Exchange all broken TGCs where possible
- ➡ Consolidate part of the LUCID system
- Upgrade the magnets cryogenics with a new spare main compressor and decouple toroid and solenoid cryogenics
- Add specific neutron shielding (behind end-cap toroid, USA15)
- ➡ Revisit the entire electricity supply network (UPS,...)
- Repairs and maintenance work in general
- → Preparations for Phase I upgrade (moveable b-pipe, AFP prototypes,...)
- ➡ MBTS removal and possible replacement

### Tracking: improve event reconstruction time

For 2012: in addition to improved tracking performance
 → ~30% CPU reduction in track reconstruction
 at µ~30 was achieved

