AX-PET: Demonstrator for an axial Positron Emission Tomography

Chiara Casella, ETH Zurich
AX-PET: Demonstrator for an axial Positron Emission Tomography

- **Axial concept**
 What is it? Why?

- **AX-PET detector**
 “Demonstrator” for a PET scanner

- **AX-PET detector performance**
 from characterization measurements with 22-Na sources

- **Tomographic image reconstruction, few examples**

- **Preliminary results with Digital Si-PM from Philips**
 as alternative photodetectors for the AX-PET
PET: “in-vivo” functional imaging technique in nuclear medicine

Positron Emission: \[p \rightarrow n + e^+ + \nu_e \]
Positron Annihilation: \[e^+ e^- \rightarrow \gamma \gamma \]
\((E_\gamma = 511 \text{ keV}) \)

How does a PET work?

1. **Inject the radiotracer into the body**
 - Radiotracer: biologically active compound mixed to the positron emitter.

2. **Wait for uptaking period**

3. **Start the acquisition (i.e. detection of coinc. events)**
 - Clear event signature: coincidence of 2 photons of known energy (511 keV) emitted co-linearly

4. **Feed the data into the reconstruction algorithms**

5. **Obtain the image of the activity concentration**
Axial concept

from radial to axial!

- long crystals
- oriented along the axial direction
- several layers arrangement

always a compromise between
good spatial resolution (small L, small δp)
or good sensitivity (long L)

$$\delta p = L \cdot \sin \theta$$

max interaction efficiency, long L
$$\epsilon = 1 - e^{-\mu L}$$

min parallax error => short L
- deterioration of the spatial resolution
- non-uniformity in the field of view

the axial geometry allows for a parallax free system, in which spatial resolution and sensitivity are completely decoupled:

- improve spatial resolution \iff reduce d
- improve sensitivity \iff increase Nr layers

Chiara Casella, 22/5/2012
AX-PET detector concept

- 3D localization of the photon interaction point + energy measurement
- high granularity => possibility to identify Compton scattering events in the detector

Crystals:
- trans-axial coordinate \((x,y)\)
 - digital resolution from crystal size \((d/\sqrt{12} \times 2.35\) FWHM\)
- energy

Wave length shifter strips:
- axial coordinate \((z)\)
 - center of gravity => resolution better than digital \((<w)\)
AX-PET module

- **SCINTILLATOR CRYSTALS**:
 - Inorganic LYSO (Lu$_{1.8}$Y$_{0.2}$SiO$_5$: Ce, Prelude 420 Saint Gobain) crystals
 - high atomic number
 - high density ($\rho = 7.1$ g/cm3)
 - λ @511 keV ~ 1.2 cm
 - quick decay time ($\tau = 41$ ns)
 - high light yield (~32000 γ/ MeV)
 - $3 \times 3 \times 100$ mm3

- **WAVE LENGTH SHIFTING STRIPS (WLS)**:
 - ELJEN EJ-280-10x
 - highly doped (x10 compared to standard) to optimize absorption
 - $0.9 \times 3 \times 40$ mm3

- Each crystal and WLS strip is readout individually by its own photodetector

Photodetectors

- **MPPC (Multi Pixel Photon Counter) from Hamamatsu**
 - also known as SiPM / G-APD
 - high PDE (~50%) ✓
 - high gain (10^5 to 10^6) at low bias voltage ✓
 - insensitive to magnetic field ✓
 - compact size ✓
 - temperature dependent ✓
 - dark rate ✓

- MPPC S10362-33-050C:
 - 3×3 mm2 active area
 - 50μm x 50μm pixel
 - 3600 pixels
 - Gain ~ 5.7×10^5

- MPPC 3.22×1.19 Octagon-SMD:
 - 1.2×3.2 mm2 active area
 - 70μm x 70μm pixel
 - 1200 pixels
 - Gain ~ 4×10^5
 - custom made units

~ 1000 pe
~ 10 - 50 pe

Chiara Casella, 22/5/2012
AX-PET demonstrator

Goal of the collaboration:
Build and fully characterize a "demonstrator" for a PET scanner based on the axial concept. Assess its performances.

Demonstrator: Two identical AX-PET modules, used in coincidence

- two modules built - at CERN
- module performance assessed (22-Na source)
 - individually - at CERN
 - in coincidence
- tomographic image reconstruction
 (with a dedicated gantry setup)
- all stages fully supported by simulations

Chiara Casella, 22/5/2012
AX-PET detector performance

• Characterization measurements with 22-Na source + tagger
• Methods and results in: \textit{NIM A 654 (2011) 546-559}

• LYSO energy response

typical LYSO energy spectrum (in ADC counts)

\[
\frac{\Delta E}{E} \sim 11.8 \% \text{ FWHM @} 511 \text{ keV}
\]

(averaged over 96 crystals)

\[
\frac{\Delta E}{E} \sim 12.8 \% \text{ FWHM @} 511 \text{ keV}
\]

(on the module sum)

Multiplicities: when 2 modules coincidence: \((0.66)^2 \sim 0.43 \text{ photoelectric interactions}

\begin{itemize}
\item \textbf{LYSO energy response}
\item \textbf{2-D moving station}
\item \textbf{PMT}
\item \textbf{LYSO energy response}
\item \textbf{Module}
\item \textbf{22Na source}
\item \textbf{NIM A 654 (2011) 546-559}
\item \textbf{Characterization measurements with 22-Na source + tagger}
\item \textbf{Methods}
\end{itemize}
AX-PET detector performance

Spatial resolution:

1. **axial direction** (two detector coincidences):
 - axial coordinate: from center of gravity method (continuous distribution)

 \[
 R_{intr} = \sqrt{R_{meas}^2 - R_\rho^2 - R_{180}^2} \approx 1.35 \text{ mm, FWHM}
 \]
 - Intersection of the LOR with the central plane.
 - Includes contribution from:
 - intrinsic resolution
 - physics of positron emission

2. **trans-axial direction**: digital, from crystal size

 \[
 R_{x,y} = (3\text{mm}/\sqrt{12}) \times 2.35 \sim 2 \text{ mm FWHM}
 \]
Parallax free demonstration

Parallax error is more and more important outside the center of the FOV.

Intersection of LORs with the plane containing the source

F2F

OBL

Parallax free demonstration

Intrinsic resolution is **not degraded by parallax effects**, even in very oblique configuration!

Chiara Casella, 22/5/2012
Simple image reconstruction

capillaries:
- L = 3 cm
- $\varnothing = 1.4$ mm
- pitch = 5 mm

- central FOV
- measurements performed at ETH Zurich, Radiopharmaceutical Institute
- capillaries filled with 18-F in water solution

Profiling of the reconstructed capillaries (3 different measurements) and resolutions (FWHM) of reconstructed sources. The resolution still includes the capillary finite size (1.4 mm inner diameter).

Chiara Casella, 22/5/2012
NEMA phantom

NEMA-NU4 IQ (mouse) phantom:

Three regions in the same phantom to address three different aspects:
- Hot & Cold rods for contrast
- Homogeneous cylinder for assessing the ability to reconstruct homogeneous distributions
- Series of small rods for resolution

- Extended FOV
- Measurements performed at AAA (Advanced Accelerator Applications), St Genis, France
- July 2011
- Phantom filled with 18-F in water solution

NEMA phantom hot / cold / warm - July 2011, AAA

Reconstructed 1 mm rod => FWHM ~ 1.6 mm

Different color scale!
Resolution phantom

Mini Deluxe phantom

- extended FOV
- measurements performed at AAA
- phantom filled with 18-F in water solution

July 2011, AAA

Rods oriented parallel to Z axis

- Fixed time acquisition: 120 s /step
- 60 iterations + post-reconstruction smoothing
- No corrections
- Artefacts due to data truncation (FOV too small...)

Chiara Casella, 22/5/2012
Rods oriented parallel to Z axis

Mini Deluxe phantom

- Rods oriented parallel to Z axis
- Extended FOV
- Measurements performed at AAA
- Phantom filled with 18-F in water solution

July 2011, AAA

Parallel to Z axis

- Rods oriented parallel to Z axis
- Fixed time acquisition: 120 s /step
- 60 iterations + post-reconstruction smoothing
- No corrections
- Artefacts due to data truncation (FOV too small...)

Perpendicular to Z axis

Results presented in Valencia, IEEE 2011
Inter-Crystal Scattering (ICS)

Images shown before used only photoelectric absorption events!

But ignoring ICS events is underutilization of the acquired data

=> Attempts to include ICS events in the reconstruction i.e. improve sensitivity

“triple” ICS events => 2 possible LOR:

- include both LOR, equal weight ("Prob50")
- include both LOR, weight from \((d\sigma/d\Omega)_{\text{Klein-Nishina}}\) ("Prob")
- include only one LOR, the one with max Prob. \((d\sigma/d\Omega)_{\text{Klein-Nishina}}\) ("MaxProb")

NEMA Phantom:

- triple ICS (correctly reconstructed) / photoelectric ~ 20%
- photoelectric events largely dominate the reconstruction

Works in progress!!! Preponderance of standard (photoelectric) coincidences => ICS inclusion provides only a small advantage. Improvement expected to increase for smaller data sets.
Digital SiPM from Philips

Digital SiPM: currently under test as possible alternative photodetector for AX-PET

- fully digital implementation of SiPM / G-APD
- CMOS electronics integrated in the same substrate of each photodiode
- all photodiodes + their electronics connected to:
 - Photon counter
 - TDC => time information

Chiara Casella, 22/5/2012
Interest of dSiPM for PET applications:

- **Timing information; intrinsically very good time resolution (~ 50 ps)**

 => **Great potential for TOF-PET**

- Small; high level of integration; e.g. bias supply included => Compactness
- Digital => Low noise.
- Digital => Temperature and gain stability less crucial than in analogue devices.
- Possibility to disable individual cells => Significant reduction in the dark count rate (but lower PDE)
- MRI compatible

Two different implementations
- **DPC6400-22-44**: 6400 cells/pixel
 - better filling factor, higher PDE
 - larger dark count rate
 - higher saturation
- **DPC3200-22-44**: 3200 cells/pixel

MPPC: 3600 cells
3x3 mm²

Full tile: 64 (8x8) sensors

Sensor (“pixel”): 3.3x3.8 mm²

Chiara Casella, 22/5/2012
Goal: test the potentiality of a TOF-PET combined with the axial concept

reduced size AX-PET like module
• 4 LYSO (2x2) and 16 WLS strips (2x8)
• dSiPM coupled to LYSO and WLS strips
• axial coordinate measurement, axial resolution
• timing of the photons vs axial position

dual side readout of the LYSO
• timing (mean time measurement)
• (modest) axial coordinate measurement (both from time and from light yield sharing)

coincidences setup

Setups currently being built!

Tile need to be cooled to reduce the dark count rate!

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dark Count PER CELL</th>
<th>Dark Count PER PIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>room T</td>
<td>~ 2.5 kHz</td>
<td>8 MHz</td>
</tr>
<tr>
<td>10 °C</td>
<td>~ 1 kHz</td>
<td>3.2 MHz</td>
</tr>
<tr>
<td>10 °C, 10% worst cells disabled</td>
<td>~ 350 Hz</td>
<td>~ 1 MHz</td>
</tr>
</tbody>
</table>

measured on DPC3200-22-44
Minimal AX-PET like setup

- basic setup, poor mechanical precision and reproducibility - no cooling

AX-PET components:
- one LYSO crystal
- one WLS strip
- 22-Na source

- \((\text{LightYield})_{\text{lyso}} \sim 800-1500 \text{ pe} \, @511 \text{ keV}\) (strongly dependent on optical coupling)

- after correcting for dSiPM saturation
 \[\Rightarrow R_{\text{FWHM}} \sim 12.3\% \, @511 \text{ keV} \]

- \((\text{LightYield})_{\text{wls}} \sim 50 \text{ pe} \) (@511 keV energy deposition in the LYSO)

- clear correlation in the LYSO/WLS responses

- large spread in the WLS response due to non collimated beam

- no axial coordinate measurement, this would need more WLS strips!

Chiara Casella, 22/5/2012
Timing perfs, first results

- basic setup, poor mechanical precision and reproducibility

- **two small LYSO scintillator crystals**
 - **non AX-PET standard**
 - (2x2x12)mm³ ; (2x2x15)mm³
 - teflon wrapped, optical coupling with grease

- **two DLS_3200 tiles**

- 22-Na source

- measure the time difference (Δt) between the arrival of the first photons in the tiles

- **$\Delta t = 200 \text{ ps, FWHM}$** (cutting on events with 511 keV energy deposition)

- Tile cooling with a Peltier unit ($T_{\text{Peltier}} = 5^\circ \text{C}$)

- Need to repeat the measurement with the long AX-PET crystals

Chiara Casella, 22/5/2012
Conclusions

Axial concept for a PET scanner:
- i.e. long and axially oriented scintillation crystals, intrinsically parallax free system
 Spatial resolution and sensitivity could both be optimized

AX-PET implementation:
- 3D spatial information of the photon interaction point with:
 - matrix of LYSO crystals and WLS strips
 - individual readout of each channel (Si-PM)

Two modules built (i.e. AX-PET demonstrator)
- Energy resolution ~ 12% FWHM, @ 511 keV
- Spatial resolution ~ 1.35 mm FWHM
 (competitive with state of the art PET)

AX-PET demonstrator:
Extensively tested with sources and successfully used for phantoms image reconstruction!

Digital SiPM as promising alternative for photodetector for AX-PET
- excellent time resolution => great potentiality for TOF-PET
- currently being tested for the possibility of TOF-PET combined with the axial concept
- final setup being built
- preliminary promising results (from rudimentary setups):
 - $\Delta t \sim 200$ ps FWHM (with short crystals!!!)
 - $L_Y \sim 1500$ pe for AX-PET LYSO scintillators
 - $\Delta E/E \sim 12\%$ FWHM @511 keV
 - axial resolution (results still to come....)

- calorimeter with tracking capabilities (granularity)
- novelty as a PET detector:
 - geometry
 - materials and technology “stolen” from high energy physics
 - WLS implementation
 - Compton scattering reconstruction

So... Stay tuned :-) !!!

Chiara Casella, 22/5/2012
The AX-PET Collaboration

A. Braem, M. Heller, C. Joram, T. Schneider and J. Séguinot
CERN, PH Department, CH-1211 Geneva, Switzerland

V. Fanti
Università e Sezione INFN di Cagliari, Italy.

C. Casella, G. Dissertori, L. Djambazov, W. Lustermann, F. Nessi-Tedaldi, F. Pauss, D. Renker¹, D. Schinzel²
ETH Zurich, CH-8092 Zurich, Switzerland
¹ Currently with Technical University München, D-80333 München, Germany
² Currently with Massachusetts Institute of Technology, Cambridge 02139-4307, USA.

J.E. Gillam, J. F. Oliver, M. Rafecas, P. Solevi
IFIC (CSIC / Universidad de Valencia), E-46071 Valencia, Spain

R. De Leo, E. Nappi
INFN, Sezione di Bari, I-70122 Bari, Italy

E. Chesi, A. Rudge, P. Weilhammer
Ohio State University, Columbus, Ohio 43210, USA

E. Bolle, S. Stapnes
University of Oslo, NO-0317 Oslo, Norway

U. Ruotsalainen, U. Tuna
Tampere University of Technology, FI-33100 Tampere, Finland
typical energy spectrum of one LYSO inside the module:

- photopeak (511 keV)
- Compton continuum (0 - 340 keV)
- Lu X-ray peak (~ 55 keV)

Light yield at 511 keV ~ 1000 pe
(from independent calibration measurements)

Energy resolution

- from gaussian fit of the photopeak
- AFTER ENERGY CALIBRATION

< R_FWHM > ~ 11.8% @511 keV
(averaged on 96 LYSO crystals)
LYSO energy calibration

Photopeak + Intrinsic Lu radioactivity: very good tool for the energy calibration

- LYSO No. 21 - 22Na coinc. trigger

 - with source, coincidence
 - no source, internal trg.

- LYSO No. 21 - 22Na coinc. trigger
 - 511 keV
 - 202 keV
 - 55 keV
 - 303 keV

- LYSO contains Lu-176
 - A ~ 39 cps/g
 - => ~ 250 Bq / bar
 - => ~ 12 kHz / module

Deviation from linearity (~ 5% effect)

- MPPC saturation. Due to:
 - limited nr of cells in the MPPC (3200)
 - important light yield in the scintillator (~1000)
typical integrated raw spectra of few WLS strips

- beam spot collimated at the center of the module (WLS 13)
- 511 keV energy deposition in the LYSO

• more than 1 WLS participate to the event (typically 2-4)
• noise should not be included

Light yield in WLS cluster ~ 100 pe
@511 keV LYSO energy deposition
(from independent calibration measurements: 1 pe ~ 4 ADC)

axial coordinate:
derived from center of gravity method
from all the WLS participating to the cluster
Readout & DAQ

Individual analogue readout of MPPC output

Custom designed DAQ system

- **fully analogue** readout chain
- **not optimized** at all for this specific application

- **Amplifiers**: OPA486 (Lyso) / OPA487 (WLS)
- Fast **energy sum** for all the crystals in the module
- **VATA GP5 chip**
 - 128 ch charge sensitive integrating
 - fast (~ 50ns shaper + discriminator) / slow (~ 250ns shaper) branches
 - **sparse readout** mode: only the channels above thr are multiplexed into the output
- analogue info processed by custom made VME ADC
Individual analogue readout of MPPC output
Custom designed DAQ system

- **fully analogue** readout chain
- **not optimized** at all for this specific application

- **Amplifiers:** OPA486 (Lyso) / OPA487 (WLS)
- Fast **energy sum** for all the crystals in the module
- **VATA GP5 chip**
 - 128 ch charge sensitive integrating
 - fast (~ 50ns shaper + discriminator) / slow (~ 250ns shaper) branches
 - **sparse readout** mode: only the channels above thr are multiplexed into the output
- analogue info processed by custom made VME ADC
Fast energy sum & Trigger

- analogue sum of the whole module (i.e. total energy over 48 crystals)
- with a proper threshold choice (LL x HL x notHHL)
 => select only events with 511 keV total energy deposition

TRIGGER

\[\Sigma E_{\text{Mod1}} \]
\[\Sigma E_{\text{Mod2}} \]

TRIGGER = 2 modules
- each one discriminated @ 511 keV energy sum
- used in coincidence

=> Selection of the good events
• measure delay of coincidence wrt Mod2
• measurement from the scope [Lecroy Waverunner LT584 L 1GHz]
 (no time information in the AX-PET readout)

Measured time resolution : \textbf{FWHM} \sim 1.9 \text{ ns}
Count rate curves (example: NEMA phantom)

NEMA, Module1 rate vs. activity

\[\text{Module Rate [kHz]} \]

NEMA, trigger vs. single rate

\[R_{\text{Trigger}} = k \cdot R_{\text{Single}} \]

NEMA, DAQ vs. trigger rate

\[\text{DAQ rate vs Activity (convolution of all contributions)} \]

NEMA, DAQ rate vs. activity

\[R_{\text{DAQ}} = \frac{R_{\text{Trigger}} \cdot e^{-R_{\text{trigger}} \cdot \tau_p}}{1 + \tau_{NP} \cdot R_{\text{trigger}} \cdot e^{-R_{\text{trigger}} \cdot \tau_p}} \]
Towards a tomographic reconstruction...

How to mimic a full scanner with 2 modules only available?

Central FOV:
rotating the phantom...

θ = 0°, 20°, 40°... 180° (9 steps)
φ = 0°

Extended FOV:
...and rotating also the module

θ = 0°, 20°, 40°... 360° (18 steps)
φ = 20°

1 tomographic acquisition = 27 steps acquisition
mimics a 18-modules ring, with coincidences between face-to-face ± one adjacent modules

Chiara Casella, CERN Detector Seminar, 2/3/2012
Setup for tomographic reconstruction

The two modules are mounted on top of a portable platform, which houses also the electronics, power supply, etc...

- One rotating motor for the source / phantom
- One module fixed (Mod1); the other rotating (Mod2)

setup @ CERN, Big 304
Spatial resolution: small animal PET comparison

N. Auricchio - VCI 2010, Febr 2010

Small animal PET comparison
from N. Auricchio, VCI 2010 (Feb 2010)
AXPET result ($R_{FWHM} \sim 1.35 \text{ mm}$) is competitive with (commercial) state of the art PET scanner

- Sensitivity parameter is not meaningful in the demonstrator setup (2 mods only, limited solid angle coverage)
- AXPET not really tuned to be a small animal PET!
D-SiPM: first preliminary results

LYSO light yield

Raw spectrum

511 keV

1.27 MeV

LYSO energy spectrum, Na-22 source

Energy spectrum
(calibrated, corrected for saturation)

R_FWHM ~ 12.3%

PRELIMINARY !!!

Chiara Casella, CERN Detector Seminar, 2/3/2012
Digital Silicon Photomultiplier (D-SiPM)

pixel (i.e. diode) state machine:

1. **ready**
2. **valid?** (yes/trigger)
3. **integration**
4. **readout**
5. **recharge**

READY:
- All diodes charged above breakdown
- Recharge transistors open

valid?:
- Trigger (1st, 2nd, 3rd, 4th photon)
- **yes** integration
- **no** recharge

Integration Time:
- (5-40) ns
- (0-20) μs
- 680 ns

Readout:
- Proceeds line by line
- The number of photons detected in a line is added to the photons accumulator
- While reading out one line, the preceding one is recharged
- Sensor is still sensitive during readout ⇒ ~1/2 readout time still contributes to the integration time

Recharge / Reset:
- Global pixel recharge
- TDC reset

See: Thomas Frach, CERN Detector seminar, Oct 2011
Digital Silicon Photomultiplier (D-SiPM)

Digital SiPM – Trigger Logic

- Each sub-pixel triggers at first photon
- Sub-pixel trigger can be OR-ed or AND-ed to generate probabilistic trigger thresholds
- Higher trigger threshold decreases system dead-time at high dark count rates at the cost of time resolution

Digital SiPM – Validation Logic

- Similar to the trigger logic
- Logic combination of sensor lines
- Sets higher photon threshold → energy threshold

Validation check: at the subpixel level

See: Thomas Frach, CERN Detector seminar, Oct 2011
Validation check: **at the subpixel level**

Each subpixel is divided into rows regions.

Regions ORed / ANDed depending on the exact validation pattern.

Management of the subpixels validation:

- **DLS_6400**: All subpixels are ANDed \iff Validations patterns: $[4, 8, 16, 32]$
- **DLS_3200**: All subpixels are ORed \iff Validations patterns: $[1, 2, 4, 8]$
D-SiPM: Dark counts

PHILIPS
DLD8K – Dark Counts

Control over individual SPADs enables detailed device characterization

- Over 90% good diodes (dark count rate close to average)
- Typical dark count rate at 20°C and 3.3V excess voltage: ~150cps / diode
- Low dark counts (~1-2cps) per diode at -40°C

Fig. 6. Total dark count rate of the sensor at different temperatures.

switching off diodes is equivalent to loss of sensitive area => PDE reduction

see: Thomas Frach, CERN Detector seminar, Oct 2011

Thomas Frach,
NSS-MIC_Conference_Record_2009_N28-005.pdf
D-SiPM: Timing properties

PHILIPS

DLD8K – Photon And Time Resolution

Photon Resolution

- Sensor triggered by attenuated laser pulses at first photon level
- Laser pulse width: 36ps FWHM, $\lambda = 410\text{nm}$
- Contribution to time resolution (FWHM):
 - **SPAD**: 54ps
 - **Trigger network**: 110ps
 - **TDC**: 20ps

Time Resolution

- $T_{\text{res}}(N) = 27.8 + 354.9/N$

TDC:

1 tick = 19.5 ps
24 bits \Rightarrow 1 frame \sim 330 μs
($2^{24} \times 19.5\text{ps}$)

Intrinsic
(avalanche spreading uncertainty)

Works in progress to reduce it

see : Thomas Frach, CERN Detector seminar, Oct 2011
DLD8K – Scintillator Measurements (I)

- 3 x 3 x 5 mm3 LYSO in coincidence, Na-22 source
- Time resolution in coincidence: **153ps FWHM**
- Energy resolution (excluding escape peak): 10.7%
- Excess voltage 3.3V, 98.5% active cells
- Room temperature (31°C board temperature, not stabilized)
Digital Light Sensor Array DLS 6400-22-44 V2.0

Key Features
- 8 x 8 pixel array
- Single photon counting capability
- Integrated Time-to-Digital converter
- First photon trigger
- Excellent timing resolution
- Fully digital interface
- Four side tileable

Specifications

<table>
<thead>
<tr>
<th>Physical Characteristics</th>
<th>DLS 6400-22-44 V2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Dimensions</td>
<td>32.6 x 32.6 mm²</td>
</tr>
<tr>
<td>Pixel Pitch (H x V)</td>
<td>4.0 mm x 4.0 mm</td>
</tr>
<tr>
<td>Pixel Active Area</td>
<td>3.8 x 3.3 mm²</td>
</tr>
<tr>
<td>Number of Cells Per Pixel</td>
<td>6396</td>
</tr>
<tr>
<td>Cell Size</td>
<td>30 x 50 μm²</td>
</tr>
<tr>
<td>Spectral Response Range</td>
<td>380 nm – 700 nm</td>
</tr>
<tr>
<td>Peak Sensitivity Wavelength (λ_p)</td>
<td>420 nm</td>
</tr>
<tr>
<td>Quantum Efficiency (PDE) @ λ_p</td>
<td>30 %</td>
</tr>
<tr>
<td>Fill Factor</td>
<td>54 %</td>
</tr>
<tr>
<td>Dark Count Rate</td>
<td>< 5 MHz / pixel at room temperature</td>
</tr>
<tr>
<td>Operational Bias Voltage</td>
<td>< 35 V</td>
</tr>
<tr>
<td>Temperature Dependence of PDE</td>
<td>-0.33%/°C in the range of 15°C - 25°C</td>
</tr>
<tr>
<td>Intrinsic Timing Resolution</td>
<td>approx. 40 ps</td>
</tr>
</tbody>
</table>
Time of Flight PET:

Constraint the location of the emission point in a LOR measuring the arrival time of the two 511 keV photons

Not tight enough to avoid image reconstruction

Significantly improves S/N

\[\Delta x = \frac{c}{2} \Delta t \]

Position of the annihilation wrt the center of the FOV

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>(\Delta x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 ps</td>
<td>12 cm</td>
</tr>
<tr>
<td>500 ps</td>
<td>7.5 cm</td>
</tr>
<tr>
<td>100 ps</td>
<td>1.5 cm</td>
</tr>
</tbody>
</table>
AX-PET inspired other developments

COMPET: University of Oslo, Norway - E. Bolle et al.

research project for a pre-clinical PET scanner with high sensitivity, high resolution. MRI compatible

- no axial geometry
- 3D reco of photon interaction point with LYSO + WLS + G-APD

E. Bolle et al, NIM A 648(2011) S93-S95

Tampere University (Finland): build a small specific scanner based on AX-PET (toward possible commercialization...)

Low cost planar detector for PET

Triumph, Canada - F. Retiere et al.