MAROC, PARISROC, SPIROC: Latest generation of ASICs for photodetectors readout

12th Pisa Meeting on Advanced Detectors

Nathalie Seguin-Moreau on behalf of OMEGA microelectronics group

Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud, Bat. 200, 91898 Orsay Cedex
Outline

The OMEGA group (10 designers) has designed a new generation of ASICs, the “ROC” family in AMS (AustriamMicroSystem) SiGe 0.35 µm technology to read out signals from various families of photo-detectors

1. **MAROC3** (Multi Anode ReadOut Chip /SPACIROC/HARDROC/MICROROC) a 64 channels chip to read out Multi Anode Photomultipliers (MAPMT)

2. **PARISROC2** (Photomultiplier ARray In SiGe ReadOut Chip) a 16 channel chip to read out array of Photomultipliers (PMT)

3. **SPIROC2** (SiPM Integrated ReadOut Chip) /EASIROC a 36 channel chip for Silicon PhotoMultiplier (SiPM) readout.

MAROC:
- ATLAS luminometer Roman Pot

PARISROC:
- PMm2 project

SPIROC:
- ILC, Analog Hadronic Calorimeter prototype
MAROC for MAPMT

- Started with OPERA_ROC (2001)
 - 32 Channels in BiCMOS 0.8 µm
 - 3000 chips produced in 2002
 - Readout OPERA Target tracker in Gran Sasso

- MAROC1 (2004)
 - First prototype with 64 channels
 - AMS SiGe 0.35 µm (12 mm², Pw=5 mW/ch)

- MAROC2 (2006)
 - 1000 chips produced and bonded on a compact PCB for ATLAS luminometer (ALFA)

- MAROC3 (2009)
 - Lower power dissipation
 - Wilkinson ADC added
 - 1000 chips produced in 2010

- Many applications: Double-Chooz, Menphyno, medical imaging (Valencia, ISS Roma)…
MAROC3 general architecture

- 64 channel inputs
- Low input impedance (50-100 Ω)
- Variable gain preamps (8 bits/ch.)
- Variable slow shaper (20-100 ns)
- 2 T&H (baseline and max.)
- 1 mux. analog charge output
- 1 digitized charge output (8, 10 or 12 bits ADC)
- 64 trigger outputs
- 2 OR outputs
- 10 bits DAC as threshold
- Internal bandgap for voltage references
- $P_w = 3$ mW/ch
- 828 slow control parameters
MAROC3: Scurves with FSB

Trigger efficiency of the 64 channels as a function of the DAC value for 50fC injected charge and adjustment preamplifier gain

- Mean 461 UDAC
- Dispersion= 20 UDAC
- Rms= 5 UDAC
- rms : 2.5 fC

50% trigger efficiency as function of the threshold

- fast shaper gain ~ 2.3V/pC
- minimal input charge for which we can trig is 5fC

Charge linearity for different preamplifier gain via 12-bit ADC

- non linearity limit at 2%
- G=40
- G=32
- G=16
- G=8
- G=4

Histogram of pedestals for 3 channels

- MAROC3 - ASIC #3
- Wilkinson ADC pedestal
- 100k acquisitions
- ch36
 - mean = 281.5
 - rms = 1.8
- ch29
 - mean = 256.7
 - rms = 1.9
- ch12
 - mean = 271.0
 - rms = 1.9

Variant: SPACIROC

JEM EUSO experiment

Analog Front End similar to MAROC
64 channels

Photoelectron counting (<50MHz)

Time Over Threshold
(collab.JAXA/Riken/Konan University)

Digital part: Digitization, memorization

Power consumption < 1 mW/ch

data flow ~ 384 bits / 2.5 μs

Radiation tolerance: triple voting

SPACIROC: 16mm²
Variant: HARDROC

RPC detector (SDHCAL-ILC)

Analog Front End similar to MAROC

- 64 channels
- Auto trigger on 10 fC up to 20 pC
- 5 0.5 Kbytes memories to store 127 events
- **Full power pulsing => 7.5 µW/ch**

SDHCAL technological proto with 40 layers (**5760 HR2 chips**) built in 2010-2011. and under tesbeam at CERN May 2012

Medical applications (IMNC):

TRECAM (Tumor Resection CAMera): miniaturized gamma-camera for breast cancer surgery

Industrial transfer

@IPN Lyon

256 channels flat Panel MC-PMT
4x64 channels HARDROC2

Field of view : 50 x 50 mm²
Weight : around 1 kg
Variant: MICROROC

MICROROC: 64 channels for μMegas (DHCAL ILC)

- Very similar to HARDROC except for the input preamp (collaboration with LAPP Annecy) and shapers (100-150 ns)

- Noise: 0.2fC Cd=80 pF => Auto trigger on 1fC up to 500fC

- Pulsed power: 10 µW/ch (0.5 % duty cycle)

- HV sparks protection

- 1 m2 in TB in August and October 2011. Very good performance of the electronics and detector (Threshold set to 1fC).

- 2012: 4 m2 in TB
PARISROC for large PMTs

- Photomultiplier Array Integrated in SiGe Read-Out Chip
 - Replace large PMTs (20”) by arrays of 16 smaller ones (12’’), PMm2 project
 - **Smart photodetector**
 - 16 **independent** channels
 - Auto-trigger at 1/3 p.e.
 - Charge (300 pe) and time (1ns) measurement (10-12 bits)
 - Water tight, common high voltage for PMTs
 - Data driven: « One wire out » for DATA and power supplies

- First prototype in 2008

- Second prototype in 2010 (to improve the performances)

- Main applications in large Water Cerenkov
 - **Chip studied by LAGUNA (MENPHYS), LHAASO…**

Demonstrator realized by the IPNO with 16 x 8-inch Hamamatsu tubes
Input stage
2 input preamplifiers with adjustable gains (on 8 bits)

Charge measurements
- Two gain channels to cover the large input dynamic range
- 2 input preamplifier with adjustable gains (on 8 bits)
- Shaper with variable shaping time (form 25 ns to 100 ns) and gain
- Charge resolution: max 0.2 p.e. (32 fC) for 10-bit ADC
- Dynamic range from 1/3 pe to 600 pe (~ from 50 fC to 100 pC)

Time measurements
- 2 systems:
 1. Coarse time by 24-bit gray counter (Digital part)
 - working at 10 MHz
 - with 1.67 s of dynamic
 - 100 ns steps
 2. Fine time by analog TDC
 ✓ 100 ns dynamic range
 ✓ Time resolution: 220 ps
 ✓ Non linearity: +/- 1 ns

PARISROC: System On Chip
Trigger efficiency of one channel as a function of the injected charge at different threshold value

50% Trigger efficiency as a function of the injected charge

Good linearity < 1% down to 35 fC = 5 σ noise σ = 7 fC

Threshold can be set at 1/3 of p.e.

The whole chain is tested injecting a charge in the input of the channel: the signal is amplified, auto-triggered, held in the SCA cell and converted by 10-bit ADC

Auto-gain test (Charge measurements)

High gain
Residuals < 1 UADC → up 60 p.e.

Low gain
Residuals < 1 UADC → until 570 p.e.

1 pe charge measurement by 10-bit ADC.
Average: 93.02 UADC, sigma: 2.02 UADC, range: 12UADC.
PARISROC: TDC ramps

The TDC ramp has been reconstructed from the time values saved in the analog memory and converted by the ADC (10-bit). The validation of the good ramp is made automatically.

Table: Time overall measurements

<table>
<thead>
<tr>
<th>Time dynamic range</th>
<th>100 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Blind zone”</td>
<td>0</td>
</tr>
<tr>
<td>Linear zone</td>
<td>100 ns</td>
</tr>
<tr>
<td>Ramp 1 linear</td>
<td>± 1 ns</td>
</tr>
<tr>
<td>Ramp 2 linear</td>
<td>± 1 ns</td>
</tr>
</tbody>
</table>
SPIROC for SiPM

- SPIROC: Silicon Photomultiplier Integrated Readout Chip to read out the analog hadronic calorimeter for CALICE (ILC)
- Large detector with 8 millions channels → Chip embedded in detector:
 - 36-Channel ASIC
 - Internal input 8-bit DAC (0-5V) for individual SiPM gain adjustment
- Energy measurement: 14 bits, 1 pe to 2000 pe
 - pe/noise ratio: ~11
- Auto-trigger on MIP or on single photo-electron
 - Auto-Trigger on 1/3 pe (50fC)
- Time measurement:
 - 12-bit Bunch Crossing ID (coarse time)
 - 12-bit step~1 ns TDC→TAC (fine time)
 - Analog memory for time and charge measurement: depth = 16
 - Low consumption: ~25 µW per channel (in power pulsing mode)
 - 4kbytes internal memory and daisy chain readout

SPIROC 4 new HBUs in DESY lab
→ 70 channels equipped with scintillator tiles, LEDs, SiPM readout, 4 ASICs

(0.36m)² Tiles + SiPM + SPIROC (144ch)
SPIROC: trigger efficiency measurements

36-channel S-curves: trigger efficiency versus threshold (1 LSB = 2 mV)

MIP response in DESY
6 GeV electron testbeam

©M. Reinecke (DESY)

SiPM SPECTRUM with Autotrigger
linearity using the auto gain mode and internal ADC
EASIROC: SIMPLER VERSION OF SPIROC CHIP

- **32-channel** front-end readout (analogue part of SPIROC)
 - 2 multiplexed analog outputs (high gain, low gain) [tri state outputs]
- **Trigger output**
 - 32 Trigger outputs
 - OR32 output
 - Trigger multiplexed output (latch included) [Tri state output]
- **Low power**: 4.84mW/channel, 155mW/chip

Many applications:
- astrophysics PEBS (Aachen),
- nuclear physics (KEK, Tohoku),
- PET (Roma, Pisa, Valencia),
- Vulcanography (Napoli, IPN Lyon)

Histogram for 1 to 10 pe- on both gains

Courtesy: Ryotaro HONDA
New R&D developments: PETIROC

• SiPM readout in 0.35µm SiGe, for physics applications (high resolution time measurements) and therefore also for TOF PET MRI and pre clinical applications,
• 12 channels with 3 different architectures (end of 2011)
• High bandwidth preamp (GBWP> 10 GHz), <3 mW/ch, internal TDC (step=25 ps)
• Dual time and charge measurement up to 2500 pe-
Performance

• Good testbench performance: jitter < 10 ps rms
• Patented input stage for dual time and charge measurement
• Strong industrial interest
• Test boards with bonded die available for academic applications

• 16 channels chip to be submitted
• Startup Weeroc http://weeroc.com/ created from OMEGA for industrial applications contact person: Julien Fleury
Conclusion

MAROC (and also SPACIROC, HARDROC, MICROROC), PARISROC: for PMTs
SPIROC, EASIROC for SiPM
✓ Low power multichannel System on Chips, smart detectors
✓ Versatility allows these chips to be used in various applications
 - high energy physics, nuclear physics, medical imaging, vulcanology)

Spatial Profile for Vesuvio_Top_20m_WGS84

Location: Cable Cab (Seggiovia)

1.8 km
2.1 km
<table>
<thead>
<tr>
<th>ROC family</th>
<th>MAROC</th>
<th>SPIROC</th>
<th>EASIROC</th>
<th>HARDROC</th>
<th>MICROROC</th>
<th>SKIROC</th>
<th>PARISROC</th>
<th>SPACIROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.35µ SiGe</td>
</tr>
<tr>
<td>Packages available</td>
<td>• Naked • QFP240</td>
<td>• Naked • TQFP208</td>
<td>• Naked • TQFP160</td>
<td>• Naked • TQFP160</td>
<td>• Naked • QFP160</td>
<td>• Naked • QFP240</td>
<td>• Naked</td>
<td>• Naked • CQFP240</td>
</tr>
<tr>
<td>Detector compliant</td>
<td>PMT, MAPMT, SiPM, µmegas, RPC</td>
<td>PMT, MAPMT, SiPM, µmegas, RPC, GEM, PIN</td>
<td>PMT, MAPMT, SiPM, µmegas, RPC, GEM, PIN</td>
<td>PMT, MAPMT, SiPM, µmegas, RPC</td>
<td>µmegas RPC, GEM, PIN</td>
<td>PM matrix</td>
<td>MAPMT</td>
<td></td>
</tr>
<tr>
<td>Optimized for</td>
<td>MAPMT</td>
<td>SiPM</td>
<td>SiPM</td>
<td>RPC</td>
<td>µmegas</td>
<td>PIN</td>
<td>PM matrix</td>
<td>MAPMT</td>
</tr>
<tr>
<td>Number of channels</td>
<td>64</td>
<td>36</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Kind of measurement</td>
<td>• Threshold • Charge • Time</td>
</tr>
<tr>
<td>Outputs</td>
<td>64 triggers, 1 mux charge (analogue), 1 mux charge digitized</td>
<td>1 digital formatted output, 1 mux charge (analogue)</td>
<td>32 triggers, 2 mux charge (analogue), 1 mux trigger</td>
<td>1 digital formatted output, 1 mux charge (analogue)</td>
<td>1 digital formatted output, 1 mux charge (analogue)</td>
<td>1 digital formatted output, 1 mux charge (analogue)</td>
<td>16 triggers, 1 digital formatted output, 9 mux charge 1 mux trigger</td>
<td>64 triggers, 1 digital formatted output, 9 mux charge 1 mux trigger</td>
</tr>
<tr>
<td>Input Polarity</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>
TEST BOARD

- Testboard allow easy access to each EASIROC pin
- Testboard layout & cabling @ LAL
- Firmware using LAL USB interface
- Labview software
PARISROC: Independent channels

4 modules: Acquisition, Conversion, Read Out and Top manager.

- **Acquisition**: Analog memory
- **Conversion**: Analog charge and time into 8 bits digital value saved in register (RAM)
- **Read Out**: RAM read out to an external system

SELECTIVE READOUT

- Only hit channels are readout
- Readout clock: 40 MHz
- Max Readout time (16 ch hit): 25 µs
- 51 bits of data / hit channel

<table>
<thead>
<tr>
<th></th>
<th>PARIROC 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Time</td>
<td>26 µs</td>
</tr>
<tr>
<td>Readout Time</td>
<td>25 µs</td>
</tr>
<tr>
<td>Total cycle duration</td>
<td>51 µs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PARIROC 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel number</td>
<td>4</td>
</tr>
<tr>
<td>Coarse time counter</td>
<td>24</td>
</tr>
<tr>
<td>Extra Coarse time</td>
<td>1</td>
</tr>
<tr>
<td>Gain used</td>
<td>1</td>
</tr>
<tr>
<td>Charge converted</td>
<td>10</td>
</tr>
<tr>
<td>Fine time (TDC) used</td>
<td>1</td>
</tr>
<tr>
<td>Fine time (TDC) converted</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>51 bits</td>
</tr>
</tbody>
</table>
SPIROC general schematic

IN test

Low gain Preamplifier

0.1pF-1.5pF

15pF

High gain Preamplifier

0.1pF-1.5pF

15pF

Slow Shaper

50-100ns

Slow Shaper

50-100ns

Fast Shaper

15ns

Discri

Trigger

Variable delay

Gain selection

Gain

Charge measurement

12-bit Wilkinson ADC

Conversion maximum time : 80 μs

DAC output

8-bit DAC

0-5V

Common to the 36 channels

10-bit DAC

TDC ramp 300ns/5 μs

Time measurement

IN

IN

HOLD

READ

4-bit threshold adjustment

TDC ramp 300ns/5 μs

Depth 16

Depth 16

Depth 16

Depth 16

DAC output

8-bit DAC

0-5V

Common to the 36 channels

10-bit DAC

TDC ramp 300ns/5 μs

Time measurement
SPIROC: TDC measurements

Two different TDC modes called (by slow control):
- **ILC mode** (200 ns to match with the bunch crossing frequency at 5 MHz)
- **Testbeam mode** (5 µs)

PRELIMINARY RESULTS!

<table>
<thead>
<tr>
<th></th>
<th>ILC mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time dynamic range</td>
<td>220 ns</td>
</tr>
<tr>
<td>“Blind zone”</td>
<td>100 ns</td>
</tr>
<tr>
<td>linear zone</td>
<td>120 ns</td>
</tr>
<tr>
<td>Ramp linearity</td>
<td>± 1 ns</td>
</tr>
</tbody>
</table>

Mark Terwort
CALICE collaboration meeting
Matsumoto, March 6th, 2012