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Effect of Trapping on CCE in sLHC

Trapping effect on CCE in LHC Upgrade
0 =0, CCE =0y~ (1=

tdr

Trapping term

Depletion term

For fluence 10 n/cm?, the trapping term CCE, is a limiting factor of
detector operation |

For sLHC fluences :

Q=380¢'s/um-v, -7, =80-d, (€'s)
d, =v, -7, 1s the trapping distance
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Effect of Trapping on CCE in SLHC

TRAPPING

1
T =
t
Ovth N t ,empty

The thermal velocity v, =107cm/s

10*cm? irradiation produces N, , . ~3-5*10% cm= with 0~10"cm?

On average (e and h) it gives a 7, = 0.2 ns!

Even in highest E-field (Saturation velocity, 107 cm/s), carrier
drifts only 20-30 um before it gets trapped regardless whether
the detector is fully depleted or not |

In S-LHC conditions, about 90% of the volume of d=300um

detector is dead space if N,,,,, is not reduced!
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The CID Concept and Principle (CERN RD 39 Collaboration)
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The key advantage:
The shape of E(x) is not affected by fluence, and virtual full depletion
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The CID Concept and Principle

Pre-filling of traps by carrier injection

Carrier injection can also pre-fill the traps to make them
inactive

Carrier MIP-gene.r'a‘red
injection Pre-Fill free carriers
x EC ‘ > EC
filled
Electron trap Electron trap
Hole trap Hole trap
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CID Simulation

V=500V, T=221K
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CID, P-strip, N-injection (front, x=0)
MIP, e current
V=500, T =221 K, no radiation

1.E+13

8.E+12
@ \\
» 6.E+12
K
=
g 4.E+12

- y

3 Q, = 21,450K s

2.E+12 ]

0.E+00 T T T

0.E+00 2.E-09 4.E-09 6.E-09 8.E-09
a) Transient time (s)
CID i(t)dx P-strip, N-side injection
MIP, h-current
V=500, T =221 K, 0 neqg/cm2

1E+13

8E+12
& BEF12
)
f el
E 4E+12 5
3 \ Q,=2550e’s

2E+12 \

10 : T T
0.00E+00 2.00E-09 4.00E-09 6.00E-09 8.00E-09
b) Transient time (s)

Zheng Li May 24, 2012

No radiation
Q=24,000¢’s
(89.4% by electrons)



CID Simulation

V=500V, T=221K

Standard Strip Detector CID Strip Detector
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=500V, T=221K

CID Simulation

Standard Strip Detector
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(74% by electrons)
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Current density (Alcm)

Current comparisons

Switch over point from standard reverse

(forward) is 2x10'> n, /cm?

bias to CID
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Simulation of noise performance of CID detector versus
normal detector operation.
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The simulation has been made according to the strip detector design of CERN ATLAS
experiment: pitch 80 um, strip length 6 cm and read-out shaping time 25 ns, PIN is biased to the
full depletion and the temperature is 258 K. The bias for CID is 200V. As it can be seen, at fluence

2x10"® n,,/cm? the CID noise becomes lower than in PIN detector.
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Test Results of CID Detectors

® = 1x10" cm2, T =180 K, MIPs (1050 nm laser)
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Test Results of CID Strip Detectors

Test Beam set up
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CMS readout and DAQ

Operated at CERN H2 area
and FNAL

Nominal resolution 4um, 10
reference planes, effective
area 4x4 cm=.

Detector module can be
cooled =-53°C by Peltier
elements

Test beam setup gradually
developed since past =10yrs

Test Beam experiment on CID detectors 2008-2011

e Sensors investigated

e 2x10!5 neq/cm2 n*/p/p* MCz-Si

o 5x10%° neqlcm2 p*/n/n* MCz-Si (in 2008 3x10% n_/cm? p*/n/n* MCz-Si )



Test Results of CID Strip Detectors

5x10%> neq/cm2 results -Collected charge vs non-irrad
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Collected charge [ADC]
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Test Results of CID Strip Detectors
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5x101°> n__/cm?results -Collected charge vs V CID mode

Full charge = 40 ADC

1 ADC = 600e



CID Application for LHC Beam-Loss-Monitor

e LHC upgrade will require
BLM to be located inside of
LHe cryostat.

* BLM will receive radiation
load comparable with S-LHC
general view pixel sensors

300 = 8 « At 1.8K radiation defects will
" trap >50% of signal
200 { P o 9
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Laser Tests for LHC Beam-Loss-Monitor

& .- 2¥ Crogenic TCT at CERN
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Summarz

1. Segmented CID detectors have been modeled to
have advantages in having low depletion voltage and
trapping

2. CID strp detectors have been beam-tested to be
much more rad-hard than the standard ones up to
5x10'° n,,/cm?

3. Tests (ps-laser, beam) are underway for the
application of CID detectors as the beam-loss-monitor
for the LHC Upgrate
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CERN RD39 Collaboration: Cryogenic Tracking Detectors

I-V characteristics of CID
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CERN RD39 Collaboration: Cryogenic Tracking Detectors

I-V characteristics of CID

Current dencity (A/lcm2)
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CERN RD39 Collaboration: Cryogenic Tracking Detectors
Main advantages CID over standard PN detectors
1. The detectors are always fully depleted
2.  The electric field profile does not change with fluence

3.  Much lower bias voltage is needed

4. The higher the radiation fluence, the lower the operation current
at given bias and temperature

S. The operation bias range increases with fluence

6. No breakdown problem due to self-adjusted electric field by
space charge limited current feedback effect

7.  Simple detector processing technology (single-sided planar

technology)
8. Injection can also be used to deactivate trapping centers --- CCE’
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Characterization of CID strip
detectors Segmented deteeors

*Test beam with 225 GeV/c
muon beam at CERN HZ2.

*MCz-Si strip detector
irradiated 3x10n,,/cm?.
-768 channels attached to
APV25 read-out

-CID detector placed in
external cold box capable to
cool down to -54°C while module

is operational.
. . . -8 reference planes.
‘Data acquisition with modified .5 o0 ution ~dyum

XDAQ. Analysis with CMSSW. . 16+ 25000 events in 20min.
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