

Single hadron response measurements in ATLAS

Mário José Sousa on behalf of ATLAS Colaboration LIP (Lisboa), FCUL

1. The ATLAS detector at the LHC

2. Introdution

- Compare the calorimeter energy (E) from single isolated hadrons to the precise measurement of the track momentum (p).
- ► The modeling of the calorimeter response to single isolated hadrons in the Monte Carlo simulation is assessed.

5. Calorimeter response to identified hadrons

Extrapolation from single hadron response to jet environment requires the understanding of the response to:

- Different hadrons:
 - \star Identify π 's from K_S and Λ decays:
 - $\mathsf{K}_{\mathsf{s}} \to \pi^+ \pi^-$, $\Lambda \to \pi^- \mathsf{p}$ and $\bar{\Lambda} \to \pi^+ \bar{\mathsf{p}}$.
- Non-isolated hadrons:
 - \star Requiring isolation on K_S and Λ but not on their decay products.

► This response is the largest contribution to the Jet Energy Scale uncertainty, which is one of the main systematic uncertainty in many physics analysis.

3. E/p measurement

- Select isolated hadrons:
 - ★ p_T > 500 MeV.
 - \star No other track in isolation cone around the track.
- ► Measure **p** in the inner detector.
- ► Measure **E** in the calorimeter.
- Remove background from neutral particles.

E/p RAW distribution for one η , **p** bin. Geant4 physics model: **QGPS_BERT**

 $\langle E/p \rangle_{corr} = \langle E/p \rangle_{RAW} - \langle E/p \rangle_{BG}$, where $\langle E/p \rangle_{BG}$ is estimated using late-showering hadrons that leave low energy in the EM calorimeter.

4. E/p results for 2010

6. Calorimeter jet energy scale uncertainty

Using single hadron response measurement from in situ measurements and in test-beam.

- Calorimeter response uncertainty smaller than 2%.
- Expected shift of JES smaller than 0.5%.

7. Jet energy scale correlations

- Detailed break down in individual sources used to evaluate jet energy correlation between p_T bins.
- Relative calorimeter response cancel out all common shifts and uncertainties.
- \star Negligible for high-p_T for b-tagged jets. $\star \sim 0.5\%$ for low-p_T jets and negligible for high- p_T for quark enhanced jets.

- Sample: 24 million of minimum bias events from 2010 at $\sqrt{s} = 7 \text{ TeV}$.
- All tracks used pass the good quality criteria.

Data and MC agreement:

within 2% for 1 GeV and 5% for <math>10 GeV.

Acknowledgments:

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Conclusions

- ► Data/MC agreement in E/p better than 2% (5%) for particles with $p \in [1,10] \text{ GeV} ([10,30] \text{ GeV}).$
- ► Data and MC agrees for charged pions and protons within the uncertainties.
- ▶ For anti-protons, the data/MC disagreement is up to 10%.
- The calorimeter response uncertainty to jets is 1-3% in $|\eta| < 0.8$ for p ∈ [0.15, 2.5] TeV.

12th Pisa Meeting on Advanced Detectors

La Biodola, Isola d'Elba, Italy

May 20th and 26th, 2012