

FLYING OVER RADIOACTIVITY: THE ELBA CASE

ANTONIO CACIOLLI INFN - PADOVA

FRONTIER DETECTORS FOR FRONTIER PHYSICS 12TH PISA MEETING ON ADVANCED DETECTORS LA BIODOLA, ISOLA D'ELBA (ITALY) - MAY 20 - 26, 2012

* Natural Radioactivity and Rad-Nat project
* The AGRS setup
* The data analysis

The flight on the Elba Isle

NATURAL RADIOACTIVITY

AROUND THE WORLD ...

GAMMA DECAY DETECTION

thanks to its penetrability the gamma radiation is optimal to perform fast outdoor measurements

Radioactivity heavy, unstable element (e.g. Uranium) spontaneous decay proton beta particle (electron) neutron

> The gamma-ray energy corresponds to the emitting nuclide

THE RAD-NAT PROJECT

THE RAD-NAT (AND THEN RAD-MONITOR) PROJECT IS MADE BY A COLLABORATION BETWEEN THE INFN AND THE CGT OF SAN GIOVANNI VALDARNO (SIENA)

Geological Interest

Reference to evaluate fallout effects

Monitoring critical situations

Certifications (water, building materials ...)

R&D on new instruments and analysis procedures

THE RAD-NAT PROJECT

... in laboratory

... in situ

... in flight

THE RAD-NAT PROJECT

THE AIRBORNE SETUP: THE PRINCIPLES OF MEASUREMENTS

The 16L detector runs in list mode
Radon spectra acquired every 20 s
GPS, temperature and pressure saved every 2 s
measured area radius about 500 m
Elba flight was done in 2.5 h

THE AIRBORNE SETUP: THE ALL COMPONENTS

1 x1L Nal(TI) ²²²Rn monitor

4 channel ADC with MCA CAEN module

THE AIRBORNE SETUP

1 x11 Nal(TI) ²²²Rn monitor

4 channel ADC with MCA CAEN module

SPECTRA ÁNALYSIS

% FSA+NNLS method

** altitude corrections to relate the measured concentration with the ground one

* radon subtraction affects the eU content increasing its systematic errors

Based on the experimental points the concentration maps are made by applying the collocated cokriging procedure guided by the geological chart.

Final uncertainties around 30%

SPECTRA ÁNALYSIS

Window Analysis Method

The IAEA approach is to monitor three or four relatively broad spectral windows, corresponding to main photopeaks.

Full-Spectrum Analysis

In FSA method the shape of the total spectrum is taken into account and is "unfolded" into spectra for the individual radionuclides (sensitive spectra) and a background spectrum

THE SENSITIVE SPECTRA

Caciolli et al. Science of the Total Environment, 414(2012)639

THE SENSITIVE SPECTRA

The Non Negative Least Square constraint has been introduced in the analysis to avoid non physical results

Caciolli et al. Science of the Total Environment, 414(2012)639

TOPOGRAPHY CORRECTIONS

The measured element abundances are reduced to a flat ground surface placed at 100 m, by taking into account the topography of the terrain and the actual flying altitude

Schwarz et al. First BREAK 10(1992)11

Then following step is to apply the attenuation factor for each radioelements in order to determine the proper concentrations at ground surface

The altitude is derived by using the pressure and temperature measurements and the Laplace equation. It mandatory to monitor also this variables on ground.

²²²RN CORRECTION

A 10 cm x 10 cm x 10 cm NaI(Tl) detector is placed in top of the system and works as monitor of the radon gas. Its cps in the total spectra are due to the radioactivity from ground and from the radon gas in air.

$$CR = \alpha K + \beta (U + Rn_{4L}) + \gamma Th + \delta Rn + BG$$

Since on water the signal comes out only from ²²²Rn, cosmic rays and intrinsic background the path from Viareggio to the Elba Island was used in order to evaluate the radon correction. By measuring this value at the beginning and at the end of the flight it was possible to evaluate also the fluctuation of radon concentration during the flight time.

The radon was estimated to contribute to the eU concentration for less than 0.2 ppm which is a not negligible value only where the eU abundance is very low.

THE ELBA ISLAND ... AN IDEAL CASE

THE ELBA ISLAND ... AN IDEAL CASE

73 formations latitudinally oriented which are also representative of the Tuscany Appennini in a relatively small island (225 km²)

⁴⁰K CHART OF ELBA

CONCLUSIONS

The Rad_Monitor project is designed to measure the environmental radioactivity by using different gamma-ray spectroscopy methods
A new AGRS system (16L NaI(Tl) detector) is developed and tested on the Tuscany region
The first chart of the Elba Island was done by combining the information of radioactivity with the geological one

New test flights are planned in order to reduce the systematic errors

Bellotti Enrico, Bezzon Pietro, Broggini Carlo, Buso Paolo, Callegari Ivan, Carmignani Luigi, Colonna Tommaso, Di Carlo Giuseppe, Fantozzi Piero, Fiorentini Giovanni, Guastaldi Enrico, Mantovani Fabio, Mariani Sara, Massa Giovanni, Rossi Alvarez Carlos, Xhixha Gerti, Shyti Manjola, Claudio Pagotto, Mauro Antongiovanni, Antonio Caciolli, Liliana Mou

Grazie per l'attenzione!

EXTRA SLIDES

²³⁸U CHART OF ELBA

²³²TH CHART OF ELBA

DECAY CHAINS

In our gamma measurements the secular equilibrium is supposed

AROUND THE WORLD ...

GEOLOGICAL REFERENCE

FLIGHT PATH

3rd June 2010 2.2 h 225 km² ~100 m altitude

no good weather

Golfo di Viticcio Golfo di Procchio o Isola d'Elba

Golfordi Lacona Golfo Stella

Solfo di Cambo

LABORATORY MEASUREMENTS

In Situ Samples Collection

Laboratory Measurements

2 HPGe faced
lead and copper shielding
high resolution
1h measurements
completely automatized

Xhixha et al. submitted to J. Rad. Env.

PORTABLE DETECTOR

NaI(Tl) 1 liter detector controlled by a DiGiBase preamplifier. The signal is acquire by MAESTRO software

It is possible to measure in static position or in movement. 5 minutes spectra enough to reduce the statistics errors below 5%

EXPERIMENTAL UNCERTAINTIES

source	relative uncertainty
altitude corrections	8%
spectra deformation due to calibration on ground	< 15%
Radon (only for uranium)	average 20%
statistics	5%-15%

METHOD VALIDATION

The validation has been done measuring with the portable NaI(Tl) and by collecting samples in the same place

METHOD VALIDATION

FSA METHOD

 $N(i) = \sum C_k S_k(i) + B(i)$ $\overline{k=1}$

channel *i* in acquired spectrum

selected radionuclide intrinsic background

channel *i* in the sensitive spectrum of the k element

radionuclide concentration

The FSA allows to measure the concentration of not only natural radioisotopes but also the anthropic one, like ¹³⁷Cs

FSA METHOD

$$N(i) = \sum_{k=1}^{4} C_k S_k(i) + B(i) \qquad \chi^2 = \frac{1}{n-5} \sum_{i=1}^{n} [N(i) - \sum_{k=1}^{4} C_k S_k(i) - B(i)]^2 / N(i)$$

- by measuring in sites with unbalanced element concentration we can calibrate our system and derive the sensitive spectra [S]

- the concentration matrix [*C*] is obtained by collecting samples in the calibration sites and then measuring them with the laboratory system

$$[S] = [C]^{-1} \times [N]$$

THE SENSITIVE SPECTRA

Caciolli et al. Science of the Total Environment, 414(2012)639