The front-end chip of the SuperB SVT detector

F. Giorgi INFN and University of Bologna, Italy

On behalf of the SuperB SVT collaboration

Outline

• The SuperB project
• The Silicon Vertex Tracker
• The Strip / Stripllet readout chip
 – Analog front-end
 – Digital readout architecture
• Conclusions
The SuperB accelerator project

- Flavour physics promises sensitivity to New Physics ... but **large statistics is needed** (50-100 ab⁻¹)
- An upgrade to the first generation of B-Factories (PEP-II and KEKB) of ~2 orders of magnitude in \(\mathcal{L} \) is needed to get 50 ab⁻¹.
- The **SuperB** factory is an Italian e⁺ e⁻ accelerator concept that allows to reach \(\mathcal{L}=10^{36} \text{ cm}^{-2} \text{ s}^{-1} \) with **moderate beam current** (2A) using **very small beam size** (~1/100 of present B-Factories beams).
- **2007**: Conceptual Design Report published
- **2010**: Approved by the Italian Government (250 ME allocated for the Infrastructures)
- **2011**: Established site: Roma Tor Vergata
- **Management** under **Cabibbo Lab** consortium (INFN, Uni Tor Vergata, IIT).

Now closing the Technical Design Report
The SuperB Silicon Vertex Tracker

Design based on the 5-layer Babar SVT

1) Due to reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) required an improved vertex resolution (~factor 2)
 - EXTRA Layer0 very close to IP (@1.5 cm) with low material budget (<1% X_0) and fine granularity (50 μm pitch)
 - Layer0 area 100 cm²

2) Bkg levels depend steeply on radius
 - Layer0 needs to be fast and rad hard (>20x5 MHz/cm², >3x5 M Rad/yr)

BUT

R>3 cm, Double-sided Si strip sensors.
Low-mass design. ($P_t < 2.7$ GeV)
Stand-alone tracking for slow particles.
SVT Detectors

• Baseline
 – 5 layers of silicon strip modules (ext. coverage w.r.t BaBar) for the outer layers
 – Striplets for layer0 @ R~1.5 cm.
 – Need to develop 2 new FE chips for strips: existent chips do not match all the requirements: analog info needed, high rates in inner Layers (up to 1.4 MHz/strip in L0) & short shaping time (25-100ns), very long modules and long shaping time (0.5-1 us) in Layers 4-5.

• Layer0 upgrade for full luminosity run
 – SVT Mechanics will allow a quick access/removal of Layer0
 – Upgrading to thin pixel sensors.
 • More robust against background occupancy
 • Several options investigated:
 – CMOS MAPS
 – Hybrid Pixels
 – Vertical Integration... reliable and stable?
 – R&D continue in 2012 after TDR → pixel technology decision by 2013

Ref. talk G.Rizzo on Thursday, h 12.40:
Recent developments on CMOS MAPS for the SuperB Silicon Vertex Tracker
Strip rates on the SVT Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Side</th>
<th>Average rate on area MHz/cm²</th>
<th>Average rate kHz/strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>122</td>
<td>1340</td>
</tr>
<tr>
<td>0</td>
<td>v</td>
<td>181</td>
<td>1340</td>
</tr>
<tr>
<td>1</td>
<td>φ</td>
<td>15.8</td>
<td>848</td>
</tr>
<tr>
<td>1</td>
<td>z</td>
<td>13.6</td>
<td>670</td>
</tr>
<tr>
<td>2</td>
<td>φ</td>
<td>10.3</td>
<td>668</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
<td>9.56</td>
<td>667</td>
</tr>
<tr>
<td>3</td>
<td>φ</td>
<td>3.03</td>
<td>580</td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>4.19</td>
<td>397</td>
</tr>
<tr>
<td>4</td>
<td>φ</td>
<td>0.429</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>0.285</td>
<td>67.1</td>
</tr>
<tr>
<td>5</td>
<td>φ</td>
<td>0.216</td>
<td>81.1</td>
</tr>
<tr>
<td>5</td>
<td>z</td>
<td>0.149</td>
<td>43.9</td>
</tr>
</tbody>
</table>

Safety Factor x5 included

45°-tilted striplets

z/φ microstrip

23/05/2012

F. Giorgi - 12th Pisa Meeting on Advanced Detectors
The Strip/Striptlet front-end Chip Diagram

128 input channels

Analog Front-End:
- Pre-amplification
- Discrimination
- A/D conversion

Analog / Digital boundary

Digital Hit buffers
- Time Stamp
- ToT

Trigger Selection

Digital Readout:
- Control logic
- Trigger handling
- Hit encoding
- Formatted output

Digital output / control pads

F.Giorgi - 12th Pisa Meeting on Advanced Detectors
Analog Front End

- **Charge sensitive amplifier** with gain selection (1 bit)
- **2nd order unipolar semi-Gaussian shaper** with polarity (1 bit for p/n strip sides) and peaking time (2 bits) selection.
- **Symmetric baseline restorer** for baseline drift suppression (1 bit)
- **Threshold generator and discriminator**
- **3-4 bit A to D conversion** with TOT technique or through a flash ADC

Ref. to L. Gaioni poster: *The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT*

Ref to L. Bombelli poster: *Analog Front-end Electronics for the Outer Layers of the SuperB SVT: Design and Expected Performances*
Present performance

- **Charge sensitivity**: \(\sim 5.5 \text{ mV} \) (high gain configuration)
- **Power consumption**: \(\sim 1.3 \text{ mW} \) (not including the stages following the shaper)
- **Output dynamic range**: \(\sim 15 \text{ MIP} \) (240 ke- for layer 0, 360 ke- for layers 1 to 3)
- **Response linearity**: \(\sim 3\% \)
- **S/N**: \(> 20 \) for all the layers

Peaking times and efficiencies

<table>
<thead>
<tr>
<th>Layer</th>
<th>Peaking Time (ns)</th>
<th>Efficiency (r-(\phi)/z) %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No SF</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
<td>99/99</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>98/98</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>98/98</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>95/95</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>98/98</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>98/98</td>
</tr>
</tbody>
</table>

Shorter peaking time gives:
- lower inefficiency due to analog dead time
- better hit time resolution and lower occupancy
The Digital Readout Architecture

A fast digital readout architecture was developed during the R&D on pixel sensors (SLIM5 - VIPIX - SuperB collaborations)

The latest version features:
- Sparsified readout
- Temporal/Spatial hit encoding
- Data compression
- Data-push and triggered working mode
- Designed to withstand 100 MHz/cm² hit rate on a 50k channel matrix

THIS ARCHITECTURE HAS BEEN CHOSEN FOR STRIP CHIP TOO (WITH PROPER MODIFICATIONS & ADDON)
Pixel Architecture Overview

- **In-pixel** time stamping / hit-latch
- **Selective** (only where there is need to) **Column-based** hit extraction (time ordered)
- **One column** in **ONE clock cycle** (independent on the column occupancy, 256 encoded hits)
- **4 Sparsifiers**: each encode up to 64 hits into 8 words
- **4 Barrels**: memory elements with **multiple write-access ports** (up to 8) and single output
- **Time ordered** hit flow. Smart concentrator **preserve hit temporal sorting**.
Pixel Architecture Simulated Performance

Data Push Mode

- Efficiency vs Bunch Crossing clock

<table>
<thead>
<tr>
<th>Read Clock</th>
<th>10 ns</th>
<th>12 ns</th>
<th>15 ns</th>
<th>18 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>100.0</td>
<td>99.9</td>
<td>99.8</td>
<td>99.7</td>
</tr>
</tbody>
</table>

- 100 MHz/cm² hit rate. (tot 130 MHz)

Triggered Mode

- Efficiency vs trigger latency

- Expected working condition

<table>
<thead>
<tr>
<th>BC clock</th>
<th>100 ns</th>
<th>110 ns</th>
<th>120 ns</th>
<th>130 ns</th>
<th>140 ns</th>
<th>150 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>100.0</td>
<td>99.9</td>
<td>99.8</td>
<td>99.7</td>
<td>99.6</td>
<td>99.5</td>
</tr>
</tbody>
</table>

- 100 MHz/cm² hit rate. (tot 130 MHz)
- 192x256 matrix
- 50 MHz read clock
- 2.5 MHz trigger rate (stressed condition)
- 200k events per point

Efficiency slightly decreases (linear) as the trigger latency increase:

NO pre-trigger front buffer was foreseen in this pixel readout solution.

Pixels latch as memory bit.

- Higher granularity → lower occupancy
- Smoother efficiency drop w.r.t. strips

Simulations DO NOT take into account:
- Sensor Efficiency.
- Analog FE.
Strip Front-End Architecture Overview

- All hits of a triggered time-stamp processed at a time
- 4 Sparsifiers: each encode up to 8 channels into 8 words: (TS, Address, ToT ...)
- 4 Barrels: memory elements with multiple write-access ports (up to 8) and single output
- Time ordered hit flow. Smart concentrator preserve hit temporal sorting.

23/05/2012

F.Giorgi -12th Pisa Meeting on Advanced Detectors
Strip Front-End Architecture Overview

• Readout logic is replicated 4 Times
• Common final output stage

Round Robin

Common output stage

Data Serialized on 1 up to 6 lines per chip.

4 parallel Readout: 128 Channels

23/05/2012

F.Giorgi - 12th Pisa Meeting on Advanced Detectors
F.E. Chip Data Rates & Serial Links

<table>
<thead>
<tr>
<th>Layer</th>
<th>Side</th>
<th>Required Bandwidth Mbit/s</th>
<th>Lines at 60 MHz</th>
<th>Lines at 120 MHz</th>
<th>Lines at 180 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>250</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>v</td>
<td>250</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>φ</td>
<td>230</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>z</td>
<td>123</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>φ</td>
<td>170</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
<td>130</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>φ</td>
<td>143</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>119</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>φ</td>
<td>120</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>118</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>φ</td>
<td>87.6</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>z</td>
<td>76.1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Trigger 150 kHZ

15 % protocol overhead (on Layer0)
Trigger handling

- External electronic boards process primary trigger signals.
- Pre-processed triggers are sent to front-end electronics.
 - Fixed trig. latency on chip → configured at start-up
 → Simpler on-chip trigger logic
 - Rely on re-configurable logic on external boards for more complicate algorithms.

- **One-wire trigger** to FE chips.

![Diagram showing trigger handling process](image_url)
Strip Chip Architecture Simulations

• GOALs:
 – Choose optimal front buffer dimensions (trade-off efficiency vs cells saving)
 – Measure ~ 100 % efficiency after pre-trigger buffer insertion
 – Verify functionality of the well-known digital core in the new environment.

• Efficiency evaluation: \(1 - \frac{H_t - H_O}{H_t} \)

 \(H_t = \) Hits triggered in digital buffer
 \(H_O = \) Hits on output

• VHDL test bench and Monte Carlo generator

NB: Only digital readout efficiency taken into account
Results:
- ~**100 % efficiency** observed (digital only)
- Front buffers optimal depth: **32 hits**
 - Deeper front buffers → higher rates/trig. latency handled
- Logical verification of the architecture **OK**
Conclusions

SuperB strip FE chip development:
• **2 front-end chips** under development with different analog characteristics, same digital architecture
• **Analog channel simulated**: shaping time reduction for some layers under evaluation to mitigate background impact
• **Digital readout architecture** mostly inherited from pixel R&D
• Addition of **dedicated FIFOs** as hit buffers during trigger latency
• Whole digital readout architecture simulated (VHDL) with Monte Carlo hit generator: **100% digital efficiency** achievable even for high Layer0 rates: ~1.5 MHz/strip including SF x5.
• **Higher rates can be handled** increasing the **front buffer size**. (⇒ Higher throughput ⇒ higher number of lines and/or higher line-rate)
• FE chip **work completed for TDR**

Next steps
• First FE chip submission with IBM 130 nm - Nov. 2012
Thanks for your attention
Back Up Slides
The SuperB SVT Collaboration

C. Avanzinia, G. Batignania, S. Bettarinia, F. Bosia, G. Calderinia, G. Casarosaa, M. Ceccantia, R. Cencia, A. Cervellia, F. Cresciolia, M. Dell'Orsoa, F. Fortia, P. Giannettia, M.A. Giorgia, A. Lusianib, S. Greguccia, P. Mamminia, G. Marchioria, M. Massaa, F. Morsania, N. Neria, E. Paolonia, M. Piendibenea, A. Profetia, G. Rizzoa, L. Sartoria, J. Walsha, E. Yurtseva, M. Manghisonic, V. Rec, G. Traversic, M. Bruschid, R. Di Sipiod, B. Giacobbed, A. Gabriellid, F. Giorgid, G. Pellegrinid, C. Sbarrad, N. Semprinid, R. Spighid, S. Valentinettid, M. Villad, A. Zoccolid, M. Citterioe, V. Liberalie, A. Stabilee, F. Palomboe, L. Gaionif, A. Manazzaf, L. Rattif, V. Spezialif, S. Zuccaf, D. Gambag, G. Giraudog, P. Mereug, G.F. Dalla Bettah, G. Soncinih, G. Fontanah, M. Bombeni, L. Bosisioi, P. Cristaudoi, D. Jugovazi, L. Lancerii, I. Rashevskayai, L. Vitalei, G. Venieri

(a) Universita degli Studi di Pisa and INFN-Pisa, Italy
(b) Scuola Normale Superiore and INFN-Pisa, Italy.
(c) Universita degli Studi di Bergamo and INFN-Pavia, Italy.
(d) Universita degli Studi di Bologna and INFN-Bologna, Italy.
(e) Universita degli Studi di Milano and INFN-Milano, Italy.
(f) Universita degli Studi di Pavia and INFN-Pavia, Italy.
(g) Universita degli Studi di Torino and INFN-Torino, Italy.
(h) Universita degli Studi di Trento and INFN-Padova, Italy.
(i) Universita degli Studi di Trieste and INFN-Trieste, Italy.
Silicon Vertex Tracker

- **B → π π decay mode**, βγ = 0.28, beam pipe X/X0 = 0.42%, hit resolution = 10 μm

BaBar SVT
- 5 Layers of double-sided Si strip sensor
- Low-mass design. (Pt < 2.7 GeV)
- Stand-alone tracking for slow particles.
- 97% reconstruction efficiency
- Resolution ~15 μm at normal incidence

Design based on the 5-layer Babar SVT (R>3cm)

BUT:
- Due to reduced beam energy asymmetry (7x4 GeV vs. 9x3.1 GeV) required an improved vertex resolution (~factor 2)
 - EXTRA Layer0 very close to IP (@1.5 cm) with low material budget (<1% X0) and fine granularity (50 μm pitch)
 - Layer0 area 100 cm²

- Bkg levels depend steeply on radius
 - Layer0 needs to be fast and rad hard (>20x5 MHz/cm², >3x5 MRad/yr)
Pixel digital architecture (PI)

Analog front-end

- Threshold comparator

Hit latch

TS latch

Comparator

Time counter

Reading Time Stamp

FAST-OR logic
Pixel digital architecture (PI)

Analog front-end

Threshold comparator

Hit latch

TS latch

Comparator

COL_ENABLE

PXL_DATA_BUS

Reading Time Stamp

Hit extraction logic

23/05/2012

F. Giorgi - 12th Pisa Meeting on Advanced Detectors
Monte Carlo tuned to obtain 100 MHz/cm² hit rate on area

C++ Reports, efficiency check, analysis tools ...

MC hit extraction and application on the matrix model

Simulating hit extraction, encoding and sequencing

Generation of report files
Cluster SVTHit Z/Phi Multiplicity2 on Svt Layer 0

From Physical background simulations

Simulated architecture:
few clustered events read out
Simulation results

2 MHz/strip : Layer 0

<table>
<thead>
<tr>
<th>buffer size</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffered hits</td>
<td>3.8 M</td>
<td>12.9 M</td>
<td>12.9 M</td>
</tr>
<tr>
<td>of which triggered</td>
<td>23363</td>
<td>76850</td>
<td>23363</td>
</tr>
<tr>
<td>output triggered hits</td>
<td>14679</td>
<td>76849</td>
<td>23363</td>
</tr>
<tr>
<td>triggered hit lost</td>
<td>8684</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>62.8</td>
<td>99.9987</td>
<td>100</td>
</tr>
</tbody>
</table>

760 kHz/strip : Layer 1

<table>
<thead>
<tr>
<th>buffer size</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffered hits</td>
<td>1.4 M</td>
<td>7 M</td>
<td>7 M</td>
</tr>
<tr>
<td>of which triggered</td>
<td>8748</td>
<td>28829</td>
<td>28829</td>
</tr>
<tr>
<td>output triggered hits</td>
<td>6788</td>
<td>28825</td>
<td>28829</td>
</tr>
<tr>
<td>triggered hit lost</td>
<td>1960</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>77.6</td>
<td>99.986</td>
<td>100</td>
</tr>
</tbody>
</table>
TOT counter bit number

Shaper linearity over the full signal dynamic range (15 MIPs) is assumed.
Uncertainty in the estimation of t_0

$$t_0 = t_{th} - t_{walk}$$

<table>
<thead>
<tr>
<th>Layer</th>
<th>t_p [ns]</th>
<th>$t_p/T_{CK,TOT}$</th>
<th>$f_{CK,TS}$ [MHz]</th>
<th>σ_{walk} [ns]</th>
<th>σ_{t0} [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
<td>4</td>
<td>30</td>
<td>1.6</td>
<td>9.8</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>4</td>
<td>30</td>
<td>6.2</td>
<td>11.4</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>4</td>
<td>30</td>
<td>6.2</td>
<td>11.4</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>4</td>
<td>30</td>
<td>12.5</td>
<td>15.8</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>4</td>
<td>30</td>
<td>31.2</td>
<td>32.6</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
<td>4</td>
<td>30</td>
<td>62.5</td>
<td>63.2</td>
</tr>
</tbody>
</table>

Actually σ_{walk} gets smaller for larger values of TOT, so better estimation of t_0 could be obtained
<table>
<thead>
<tr>
<th>Layer</th>
<th>Hit rate/strip [kHz]</th>
<th>Peaking time [ns]</th>
<th>Efficiency - random waveform generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>safety factor 5 included</td>
</tr>
<tr>
<td>0 - side 1</td>
<td>933</td>
<td>25</td>
<td>0.955</td>
</tr>
<tr>
<td>0 - side 2</td>
<td>937</td>
<td>25</td>
<td>0.967</td>
</tr>
<tr>
<td>1 - phi</td>
<td>853</td>
<td>50</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.889</td>
</tr>
<tr>
<td>1 - z</td>
<td>671</td>
<td>50</td>
<td>0.938</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.879</td>
</tr>
<tr>
<td>Layer</td>
<td>Hit rate/strip [kHz]</td>
<td>Peaking time [ns]</td>
<td>Efficiency - random waveform generation</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>safety factor 5 included</td>
</tr>
<tr>
<td>2 - phi</td>
<td>668</td>
<td>50</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.903</td>
</tr>
<tr>
<td>2 - z</td>
<td>667</td>
<td>50</td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.881</td>
</tr>
<tr>
<td>3 - phi</td>
<td>580</td>
<td>100</td>
<td>0.877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>0.765</td>
</tr>
<tr>
<td>3 - z</td>
<td>397</td>
<td>100</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>0.896</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>0.863</td>
</tr>
</tbody>
</table>