

Thomas Bergauer (HEPHY Vienna)

12th Pisa Meeting on Advanced Detectors

24. May 2012

Belle and Belle II

DEPFET Pixel Detector Double-sided Strip Detector Summary

KEKB and Belle @ KEK (1999-2010)

- Center of mass **energy**: Y(4S) (10.58 GeV)
- High intensity beams (1.6 A & 1.3 A)
- Integrated luminosity of **1** ab⁻¹ recorded in total
- Belle mentioned explicitly in 2008 Physics Nobel Prize announcement to Kobayashi and Maskawa

 Asymmetric machine: 8 GeV e⁻ on 3.5 GeV e⁺

Belle Detector (1999–2010)

Belle II

SuperKEKB/Belle II Upgrade: 2010–2015

- Aim: super-high luminosity $\sim 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 1 \times 10^{10} \text{ BB}$ / year
- Lol published in 2004; TDR published in 2010 ۲
- Refurbishment of accelerator and detector required
 - nano-beams with cross-sections of ~10 µm x 60 nm
 - 10 mm radius beam pipe at interaction region

Previous SVD Layout (until 2010)

- 4 straight layers of 4" double-sided silicon detectors (DSSDs)
- Outer radius of r~8.8 cm
- Up to three 4" sensors are daisy- chained and read out by one hybrid located outside of acceptance region (VA1 chip)

Institute of High Energy Physics

Belle Silicon Vertex Detector (SVD)

• Previous SVD limitations were

Institute of High Energy Physics

- occupancy (currently ~10% in innermost layer)
 - \rightarrow need faster shaping
- dead time (currently ~3%)
 → need faster readout and pipeline
- Belle II needs detector with
 - high background tolerance
 - pipelined readout
 - robust tracking
 - low material budget in active volume

Current SVD is not suitable for Belle II

New Layout for Belle II SVD (2014-)

 New double-layer pixel detector using **DEPFET** technology

Institute of High Energy Physics

 Four layers with 6" double-sided strip detectors and forward part

optimized for precision vertex reconstruction of the decays of short-lived B-mesons

Belle and Belle II DEPFET Pixel Detector Double-sided Strip Detector Summary

DEPFET

- Ultra-thin fully depleted DEPFET active pixel
 sensors for future e+/e- colliders– C. Koffmane
- The DEPFET Active Pixels for Belle II Resolution in 50 micron thinned Sensor – P. Kodys

The DEPFET Belle-II PXD

Inner layer

8

90 mm

1.4 cm

50x50 µm²

-**\$**)

- Two layers mounted onto beam-pipe
- Angular coverage $17^{\circ} < \theta < 155^{\circ}$
- material budget below 0.5 % X₀
- low power density of 0.1 W/cm²
- background occupancy to 1 3 %
- z vertex resolution significantly improved (PXD & SVD) compared to Belle-I

	# pixeis	1600(Z)X250(R
	Thickness	75 µm
	Frame/row rate	50 kHz/10 MH
_		

ladders

Sens. length

Radius

Pixel size

24. May 2012

Thomas Bergauer

Outer layer

12

123 mm

2.2 cm

50x75 µm²

 $1600(z)x250(R-\phi)$

75 µm

50 kHz/10 MHz

Self Supporting All-Silicon Module 3D Model of Belle-II Ladder Photo of thinned backside Material Budget Distribution: Sensitive Switcher Frame: 0.071 Sensitive; 0.08 Cu Layer Bumps Frame Switcher; Bumps; 0.031 0.002 Cu Layer; 0.19 $%X_0$ in total 0.013

24. May 2012

Thomas Bergauer

DEPFET Sensors

- DEPFET = depleted p-channel field effect transistor
- Fully depleted sensitive volume
- Charge collection in the "off" state, read out on demand
- Modulation of the FET current by the charge in the internal gate
- Clear contact to empty the internal gate

PXD Module Read-out

- **Switcher** devices control the GATE and CLEAR (reset) lines
- DCD (Drain Current Digitizer) is the readout chip with A/D converters

Institute of High Energy Physics

- DHP (Digital Handling Processor) chips - first-stage preprocessing and data reduction
- → Belle II PXD produces huge data streams: raw 180 GB/s (20 PXD ladders, 8M pixels in total, occupancy up to 3%, trigger rate of 30kHz)
- \rightarrow Data reduction necessary

DEPFET/DCD-B Test System

DAQ system of Belle II PXD

- From DHP to DHH (Data Handling Hybrid) via
 15m line: kapton
 converted to twisted-pair
 in a passive patch panel
- DHHs via optical links to ATCA Compute Nodes
 - ATCA CNs reduce data based on triggers
 - ATCA CNs compute fast tracking using SVD data to quickly identify regions of interest in the PXD

Belle and Belle II DEPFET Pixel Detector Double-sided Strip Detector

Summary

SVD Configuration

- Outermost layers 4-6 with slanted forward part (trapezoidal sensors)
- Layer 3 with straight ladders: mechanics still under discussion
- Sensors need to be read out individually (no daisy-chaining)
 - High background -> fast shaping time to keep occupancy low -> high noise -> short strips
- However, very low material budget necessary

Double-sided strip sensors from 6" wafer

 Double sided strip silicon detectors with AC-coupled readout and poly-silicon resistor biasing made of 6 inch wafers

Institute of High Energy Physics

- Size 12 x 6 cm
- After market survey, prototypes ordered and delivered from
 - Hamamatsu (rectangular)
 - Micron (trapezoidal)

Trapezoidal Sensors for Forward Region

Modules for Beam Test

 Baby Modules used to verify pstop layouts and geometries

Trapezoidal Module

Baby Module

Two sensors for Two sensors for **Stack Setup** tracking (p-side) tracking (p-side) 5 27 1 40 120 GeV hadrons (mostly π)

One module just for balance

Three DUTs, one of each p-stop pattern (n-side)

Signal-to-noise-ratios

- Test sensors have been Gamma-irradiated with Co-60 (70 Mrad)
- Tested before and after at CERN beam test (120 GeV hadrons)

- Dark colors: non-irradiated, Light colors: irradiated
- Four geometries: width of "virtual" strip defined by p-stop
- Atoll pattern (half-wide) performs best, both irradiated and nonirradiated
 - Chosen for final sensor

Eta Distributions for Atoll p-Stop

Charge accumulation in unimplanted region

Readout System Concept

- Analog data transmission up to FADC by copper cable
 - Signal conditioning using FIR (Finite Impulse Response) filter
- Prototype readout system exists
 - Verified in several beam tests
 - Needs to be adapted for higher integration (chips/boards)

Prototypes

4A DC/DC converter prototype (developed at CERN)

FADC+PROC (9U VME) Digitization, zero-suppression, hit time reconstruction

Readout Chip: APV25

- Developed for **CMS** (LHC) by *Imperial College* London and *Rutherford Appleton Lab*
 - 70.000 chips installed
- 0.25 µm CMOS process (>100 MRad tolerant)
- 128 channels
- 192 cell analog pipeline
 → no dead time
- **50 ns shaping time** → low occupancy
- Multi-peak mode (read out several samples along shaping curve)
- Noise: 250 e + 36 e/pF
 → must minimize capacitive load!!!
- Thinning to 100µm successful

APV25 – Hit Time Reconstruction

- Possibility of recording multiple samples (x) along shaped waveform (feature of APV25)
- Reconstruction of peak time (and amplitude) by waveform fit
 - Offline now
 - Hardware later
- Is used to remove off-time background hits

Occupancy Reduction Belle -> Belle II

Chip-on-Sensor Concept

- Chip-on-sensor concept for double-sided readout
- Flex fan-out pieces wrapped to opposite side (hence "Origami")
- All chips aligned on one side → **single cooling pipe**

Origami Module Assembly

Ingredients:

- DSSD sensors
- Kapton PCB and pitch-adapters
- APV Readout chips

Followed by complicated assembly

procedure

Origami Module with 6" HPK DSSD

Sketch of the Outermost Ladder (Layer 6)

- Composed of 5 x 6" double-sided sensors
- Center sensors have Origami structure
- Averaged material budget over the full module: 0.55% X₀

Ladder Mechanics

Belle and Belle II DEPFET Pixel Detector Double-sided Strip Detector Summary

Summary

- KEKB is the highest luminosity machine in the world
- **Upgrade** of KEKB and Belle (2010-2015)
 - 40-fold increase in luminosity
 - Needs upgrades of all sub-detectors
- New, enlarged Silicon Vertex Detector
 - Two layers of **DEPFET** pixels
 - Four double-sided strip layers

- Strip Detector **R&D**
 - 6 inch Double Sided Strip Detectors
 - Optimal p-stop geometry identified by SNR measurements before and after irradiation
 - Readout with hit time reconstruction for improved background tolerance
 - Origami chip-on-sensor concept for low-mass DSSD readout

Advertisment

http://vci.hephy.at

The End.

Backup Slides follow

Beam Parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB High-Current	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	3.5/8.0	4.0/7.0
β_{y}^{*} (mm)	10/10	5.9/5.9	3/6	0.27/0.42
ε _x (nm)	18/18	18/24	24/18	3.2/2.4
σ _y (μm)	1.9	0.94	0.85/0.73	0.059
ξγ	0.052	0.129/0.090	0.3/0.51	0.09/0.09
σ_{z} (mm)	4	~ 6	5/3	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	9.4/4.1	3.6/2.6
N _{bunches}	5000	1584	5000	2503
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	53	80

KEKB accelerator upgrade

Institute of High Energy Physics

The Silicon Vertex Detector of the Belle II Experiment

Spatial Resolution of the Belle II Detector

MC simulation for 50 and 75 μm thick silicon: intrinsic resolution in R- Φ and Z

Extensive simulation study (ILC software framework):

- To determine the expected Belle II PXD resolution
- Cluster sizes
- A/D conversion
- Signal processing
- Impact parameter
- Vertex resolutions

Sensor Types and Vendors

Layer	# of Ladders	Rect. Sensors [narrow]	Rect. Sensors [wide]	Wedge Sensors	APVs
6	16	0	64	16	800
5	12	0	36	12	480
4	10	0	20	10	300
3	7	14	0	0	168
Sum:	49	14	120	38	1748

Current Barrel Layout

Layer	Sensors/ Ladder	Origamis/ Ladder	Ladders	Length [mm]	Radius [mm]	Slant Angle [°]
3	2	0	7	262	38	0
4	3	1	10	390	80	11.9
5	4	2	12	515	105	16
6	5	3	16	645	135	21.1

Comparison VA1TA – APV25

VA1TA (SVD)

• Commercial product (IDEAS)

Institute of High Energy Physics

- Tp = 800ns (300 ns 1000 ns)
- no pipeline
- <10 MHz readout
- 20 Mrad radiation tolerance
- noise: ENC = 180 e + 7.5 e/ pF
- time over threshold: ~2000 ns
- single sample per trigger

APV25 (Belle-II SVD)

- Developed for CMS by IC London and RAL
- Tp = 50 ns (30 ns 200 ns)
- 192 cells analog pipeline
- 40 MHz readout
- >100 Mrad radiation tolerance
- noise: ENC = 250 e + 36 e/pF
- time over threshold: ~160 ns
- multiple samples per trigger possible (Multi-Peak-Mode)

Time Resolution vs. Cluster SNR

Measured Hit Time Precision

Results achieved in **beam tests** with several different types of Belle DSSD prototype modules (covering a broad range of SNR)

2...3 ns RMS accuracy at typical cluster SNR (15...25)

Working on implementation in **FPGA** (using lookup tables) simulation successful

Finite Impulse Response (FIR) Filter

- Non-optimized channel 851-800-700-750-650-700-600-650-550-600-500-550-Munnumunnumun 450-500mammamman 400-450-400-350-300-350-300-250-250-200-200 200 178-1 0 140 na. 80 100 120 140 160 180 200 20 40 60 80 100 120 40 220 240 260 280 140 160 180 200 220 240 260 280 300 300
- **Optimized channel**

Raw APV25 output with FIR

- FIR filter with 8 coefficients
- Convolution (16-bit multiplications & sum) of incoming data at 40MHz

Maximum Radiation Length Distribution

Cooling Boundary Conditions

- Power dissipation per APV: 0.40 W
- 1 Origami sensor features 10 APVs

	Origamis /Ladder	Ladders	# APVs Origami	# APVs Hybrid	Power/ Layer [W]	Power Origami [W]
Layer 6	3	16	480	320	320	192
Layer 5	2	14	240	240	192	96
Layer 4	1	10	100	200	120	40
Layer 3	0	7	0	140	56	0
Sum		47	820	900	688	328

- Total Origami power dissipation: 328 W
- 360 W dissipated at the hybrid boards
- Total SVD power dissipation: 688 W

CO₂ Cooling

- Closed CO₂ cooling plant under development
- Collaboration with CERN
- First step is to gain experience with open (blow) system

