High Granularity Semi-Digital Hadronic Calorimeter Using GRPCs

A Semi-Digital Hadronic Calorimeter using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters candidates proposed for particle physics experiments at the future electrons collider. It is a high granular calorimeter which is required for application of the particle flow algorithm in order to improve the jet energy resolution as one of the main goals.

The Glass Resistive Plate Chamber

- Resistor material coatings: Graphite / Licron / Statguard
- Glass plate: Borosilicate. (Cathode 1.1 mm / Anode 0.7 mm)
- Gas mixture: TFE 93.5 %, CO2 5 %, SF6 2 %
- Gas distribution: Capillary tubes drives channeled inlets.
- Spacers: 1.2 mm ceramic balls + a few 8mm diam. disk.

The SDHCAL Prototype - Mechanical Structure

Construction of the SDHCAL prototype 460800 electronics channels And self-supporting mechanical structure 50 units (>5 λ) working with power-pulsing

Geant4 Simulation and Energy Reconstruction

Reconstructed Energy: $E_{reco} = (a \times N_{12} + b \times N_{12} + c \times N_{83})$

Electronic For GRPCs SDHCAL

ASiCs: HARDROC2
- One ASIC manage 8x8 (64 channels)
- 1cm² sensitive PADs.
- Triggerless mode
- Memory depth: 127 events
- Semi-digital ASiCs: 3 thresholds
- Range: 10 fC - 30pC
- Power-pulsed-ϕ-consumption< 10µW/ch

Large Electronics

DIF: FPGA-based DAQ talking through USB with Xdaq

TestBeam Cern SPS May 2012

Test Beam Data 50 GeV Pion

Shower Profile Comparison with Monte Carlo simulation 50 GeV Pion

Yield 93%