

Performance and future plans of the ALICE experiment

Vito Manzari (INFN Bari) on behalf of the ALICE Collaboration (vito.manzari@cern.ch)

ALICE, only dedicated HI experiment at LHC

Solution What do we measure?

- global observables: multiplicities, rapidity distributions
 - geometry of the emitting source: HBT, impact parameter via zero-degree energy flow
 - early state collective effects: elliptic flow
- chiral symmetry restoration: neutral to charged ratios, resonance decays
- fluctuation phenomena critical behavior: event-by-event particle composition and spectra
- degrees of freedom as a function of T: hadron ratios and spectra, dilepton continuum, direct photons
- deconfinement:

charmonium and bottonium spectroscopy

- energy loss of partons in QGP:
- jet quenching, high p_t spectra, open charm and open beauty

Heavy Ion Challenges Guide Design of ALICE

Experimental Challenges & ALICE Solutions

- 1. Extreme particle densities (Pb+Pb $dN_{ch}/d\eta \sim 2000$) 1000 times pp at LHC, 2-4 times Au+Au at RHIC
- → ALICE solution for particle densities: high granularity 3D tracking, long path-length from interaction vertex (e.g. EMCal at 4.5m)
- 2. Large dynamic range in p_T

from very soft (0.1 GeV) to fairly hard (>100 GeV)

- → ALICE solution to extend p_T range: thin detectors, modest fields (low p_T), large lever arm for tracking & resolution at large p_T ALICE: < 10% X₀ inside r <2.5m, B=0.5T, BL² ~CMS
- 3. Measure & ID many hadrons

requires: secondary vertices, leptons ID, hadron ID

- → ALICE solution for extended particle ID: employ many technologies dE/dx, Cherenkov & transition rad, TOF, calorimeters, muon filter, topological, ...
- Modest luminosity and interactions rates 10 kHz (Pb+Pb)

→ ALICE rates allow slow detectors (TPC, SDD) and moderate radiation hardness

V. Manzari - INFN Bari

12th Pisa Meeting – 21 May 2012

V. Manzari - INFN Bari

Material budget

The Cumulative mid-rapidity material budget for ALICE, ATLAS and CMS

	ALICE ALICE	x/X ₀ (%)	ATLAS	x/X ₀ (%)	CMS	x/X ₀ (%)
ALI	Beam pipe	0.26	Beam pipe	0.45	Beam pipe	0.23
	Pixels (7.6 cm)	2.73	Pixels (12 cm)	4.45	Pixels (10.2 cm)	7.23
_	ITS (50 cm)	7.43	SCT (52 cm)	14.45	TIB (50 cm)	22.23
	TPC (2.6 m)	13	TRT (1.07 m)	32.45	TOB (1.1 m)	35.23

Reconstruction and identification at low p_T due to low material budget

PID with different detectors (1/2)

I N F N

PID with different detectors (2/2)

INFN

Transverse momentum spectra of positive and negative hadrons $d^2N/(dp_t dy)$ for |y| < 0.5

Comparison of different analysis (top) and combined spectra (bottom)

Example of tracking performance

INFN

stituto Nazionale

Fisica Nucleare

ALICE data taking till 2018 and beyond

2010	Pb-Pb	O(10) μb ⁻¹	
2011	Pb-Pb	O(100) μb ⁻¹	
2012	p-Pb	~ 30 nb ⁻¹	
2013-14	LS 1	Long shutdown, increase <i>E</i>	
2015-16	Pb-Pb	Design luminosity, ~ 250 μb⁻¹/year,	
2017	p-Pb <i>or</i> Pb-Pb	Depending on integrated luminosity	approved program:
2018	LS 2	install DS collimators to protect magnets ALICE upgrade	1 nb ⁻¹ PbPb at full E + pPb
2019	Pb-Pb	Beyond design luminosity => approach total of 1nb ⁻¹	
2020	p-Pb		
2021	Ar-Ar	High-luminosity (up to 10 ²⁹ cm ⁻² s ⁻¹) Yet to be decided	
2022	LS 3	Stochastic cooling ??	goal
>2022		PbPb luminosity production, pA, other ions?	10 nb ⁻¹

some further pp running for reference

li Fisica Nucleare

ALICE beyond approved physics programme

- Progress on the characterization of QGP properties is made by studying multi-differential observables:
 - Flavour, Centrality, Transverse momentum, Reaction plane, ...
 - This requires high statistics (high luminosity)
- Physics plans focused on physics observables where ALICE unique features (PID, low material thickness, precise vertexing down to low p_t, ...), are essential
 - precision measurements of spectra, correlations and flow of heavy flavour hadrons and quarkonia at low transverse momenta
 - precision measurements of low-mass lepton pairs emitted from the QGP
 - energy loss and flavour tagging of partons in the QGP via γ -jet and jet-jet with hadron PID
 - search for the existence of heavy nuclear states such as the H dibaryon or Λ-neutron bound states and systematic study of production of anti-matter
 - This requires high statistics and precision measurements

Standard trigger strategy not applicable in most cases

ALICE Upgrade Strategy

Some state as the second state and second state as a submitted to LHCC in March

➤ Run of at least 10 nb⁻¹ with PbPb

- run ALICE at high rates, 50kHz Pb-Pb (i.e. $L = 6x10^{27} \text{ cm}^{-2}\text{s}^{-1}$), with minimum bias (pipeline) readout (\otimes max readout with present ALICE set-up ~500Hz)
 - The Pb-Pb run would be complemented by p-Pb and pp running
- Improve vertexing and tracking at low p_t
 - Contextually, submitted to LHCC the CDR for the ITS upgrade which is an essential part of the General Strategy
- It entails building
 - New beam pipe
 - New silicon tracker (improved tracking resolution and readout rate)
 - High-rate upgrade of TPC endplates and readout electronics
 - High-rate upgrade of readout electronics for TOF, CALs, Muons, DAQ/HLT
- This will allow a readout architecture with minimum-bias readout and event selection done by software algorithms in the online systems (DAQ/HLT)
- ➢ Targets LS2

ALICE

- 50 kHz Pb–Pb collisions inspected with the least possible bias
- HI run 2011: online cluster finding data compression factor of \sim 5 for TPC
 - min. bias event size $\sim 20 \text{ MB} \rightarrow \sim 4 \text{ MB}$ after data reduction
- We assume for 2018 a bandwidth to mass storage $\sim 20 \text{ GB/s}$
- Two HLT scenarios for the upgrade:
 - 1. Partial event reconstruction (clustering and tracking): Factor of ~ 20 (ready) \rightarrow Rate to tape: 20 kHz
 - clusters (associated to tracks) information recorded on tape
 - 2. Full event reconstruction: additional reduction factor $\sim 3 \rightarrow \text{Rate to tape} > 50 \text{ kHz}$
 - track parameter information recorded on tape
- If smaller bandwidth or higher interaction rate, matching between data throughput and bandwidth might be achieved with online event selection based on ITS+TRD +TOF

Readout and Online Systems Architecture

INFN

stituto Nazionale

li Fisica Nucleare

ITS upgrade options

Two design options are being studied

- A. 7 layers of pixel detectors
 - better standalone tracking efficiency and p_t resolution
 - worse PID
- B. 3 innermost layers of pixel and 4 outermost layers of strip detectors
 - worse standalone tracking efficiency and momentum resolution

1 - Get closer to the IP

-present beam pipe: $R_{OUT} = 29.8$ mm, $\Delta R = 0.8$ mm -reduced beam pipe: $R_{OUT} = 19.8$ mm, $\Delta R = 0.8$ mm

2 - Reduce material budget -present ITS: $X/X_0 \sim 1.14\%$ per layer -target for new ITS: $X/X_0 \sim 0.3 - 0.5\%$ per layer

3 - Reduce pixel size -currently 50μm x 425μm -new O(20x20μm² – 50 x 50μm²)

TPC upgrade with GEMs

INFN

stituto Nazionale

li Fisica Nucleare

Simulations position and momentum resolution

I N F N

lstituto Nazionale di Fisica Nucleare

ALICE Upgrade

- Furthermore, three major proposals are under consideration to extend the scope of ALICE: MFT, VHMPID and FOCAL (a decision will be taken by September 2012)
 - b-tagging for low $p_T J/\Psi$ and low-mass di-muons at forward rapidities
 - complement muon arm with tracking in front of absorber: secondary vertex measurement, better background rejection, improved mass resolution
 - New high momentum PID capabilities: π , k and p well beyond 10 GeV/c
 - Low-x physics with identified γ/π^0 at large rapidity

5 layers of high-granularity pixels layers

Focusing RICH with CSI photocathodes combined with DCAL

High-granularity SiW Calorimeter of ≈ 2 m2 at a distance of 3.5 m coverage: $2.5 < \eta < 4.5$

Conclusions

- After two years of operation with pp and Pb-Pb collisions, ALICE has demonstrated its excellent capabilities to measure high energy collisions at the LHC
 - rightarrow Tracking in very high multiplicity environment from very low to very high p_T
 - Particle identification over a wide momentum range
- ALICE general upgrade strategy:
 - Minimum bias readout of all central detector at 50 kHz
 - Factor ~3 improvement in secondary vertex resolution
 - Very high standalone tracking efficiency down to low p_t
 - Above 95% for $p_T > 200 MeV/c$)
- > It entails
 - Replacement of ITS
 - Major upgrade of the TPC (replace MWPC with GEM + new readout electronics)
 - Upgrade of readout electronics for TRD, TOF and Calorimeters.
 - Major upgrade of the Hardware Trigger and online systems (DAQ, HLT)
- After a couple of years of studies, ALICE is confident that this ambitious proposal can be turned into a real detector to be ready for physics in 2019
- Strong support from the whole ALICE Coll. and Funding Agencies for R&D phase

Thank you for your attention!

