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The primary goal of the ATLAS Inner Detector (ID) is to measure the trajectories of charged particles in the high particle density environment of
the Large Hadron Collider (LHC) collisions. This is achieved using a combination of different technologies, including silicon pixels, silicon
microstrips, and gaseous drift-tubes, all immersed in a 2 Tesla magnetic field. With nearly 750k alignable degrees of freedom, it is crucial that
an accurate model of the detector positions be produced using an automated and robust algorithm in order to achieve good tracking
performance. This has been accomplished using a variety of alignment techniques resulting in near optimal hit and momentum resolutions.

Alignment Algorithm Extrapolated track

The alignment employs a track based alignment algorithm which seeks to minimize Measured Hit
ur the track hit residuals. The residual is the distance from a recorded hit to an
extrapolated track position within a detector element. To minimize the residuals,
& one constructs a x¢ as below, where r(t,a) is the vector of residuals which depend

\ on t, the track parameters and a, the alignment parameters. V is the covariance
=1 O\ matrix of the hit residuals. Minimizing this x? and Taylor expanding the solution to
AN / first order around an initial residual r, shows that a matrix inversion is needed to
U mseees | | determine the changes &a to the alignment parameters.
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. R=122.5mm Figure 5. The hit residual distributions for each sub-detector of the ID after the full alignment. The hit resolution approaches that of the perfectly aligned simulation.
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Figure 2. Cut-away view of the ID Barrel Geometry The final alignment procedure uses a combination of the Global and Local x? residual minimizations. The hit resolution achieved
in 7 TeV data achieves similar performance to that of the simulation, which uses a perfectly aligned geometry.
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_ 1= “ Weak modes causing track parameter biases can be detected by using external
S O: information about the track parameters, such as the energy deposited by electrons in
r the calorimeter or the invariant mass of a known particle resonance. In particular,
g 77 " k= shifts in the reconstructed Z mass in Z—u*y- decays can be used to estimate the
, W o[ _ track momentum biases for muons. Parametrizing the momentum biases charge-
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Figure 3. Cut-away view of the ID end-cap geometry
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Figure 7. Measured momentum biases throughout the detector
before a momentum constrained alignment. The forward
regions are subject to the largest momentum biases.
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