

Frontier detectors for frontier physics 12 th Pisa meeting on advanced detectors Isola d'Elba, 20-26 May 2012

A TPC for the Linear Collider P. Colas on behalf of LCTPC

2 detector concepts : ILD and SiD

Both based on the 'particle flow' paradigm

- SiD: all-silicon
- ILD: TPC for the central tracking

Benchmark process: e+e- -> HZ, Z->µµ

Requirements:

Momentum resolution $\delta(1/p_T) < 2.10^{-5} \text{ GeV/c}$ with vertex constraint $\delta(1/p_T) < 9.10^{-5} \text{ GeV/c}$ TPC only (200 points with 100 µ resolution in R ϕ)

2-track separation: 2 mm in R ϕ and 6 mm in z in a high density background

Material budget: $<5\% X_{o}$ in the barrel region, $<25\% X_{o}$ in the endcap region

All the R&D is gathered in LCTPC

The EUDET test setup at DESY

- The EUDET (FP6) setup at DESY is operational since 2008
- Just upgraded within AIDA (FP7): autonomous magnet with 2 cryo-coolers

Beam tests at DESY : 5

technologies

- Laser-etched Double GEMs 100 μ thick ('Asian GEMs')
- Micromegas with charge dispersion by resistive anode
- GEM + pixel readout
- InGrid (integrated Micromegas grid with pixel readout)
- Wet-etched triple GEMs ('European GEMs')

Advantages of MPGDs over wires

- Reduction of ExB effect (improves spatial resolution)
- Less mechanical tension
- Less ageing than wires
- Fast signal O(few ten ns), fast and efficient ion collection
- Natural or tunable suppression of ion backflow
- Discharge probability and consequences can be mastered (use of resistive coatings, several step amplification, segmentation)

Double GEM Modules (Asian GEMs)

Laser-etched Liquid Crystal Polymer 100 µm thick, by SciEnergy, Japan 28 staggered rows of 176-192 pads 1.2 x 5.4 mm²

24/05/2012

Performance of Double GEMs

rø resolution at zero drift: 60 microns Behavior consistent with expectation from diffusion.

corrected offline

24/05/2012

Tripple GEM Module ('European GEMs')

3 standard CERN GEMs mounted on a light ceramic frame (1 mm) and segmented in 4 to reduce stored energy. Partially equipped (1000 pads, 1.26 x 5.85 mm²) 5000 pad version being built

Charge spreading by resistive foil

Resistive coating on top of an insulator: Continuous RC network which spreads the charge from $\sigma(avalanche) \sim 15\mu$ to mm: matching pad width improves position sensitivity

M. Dixit, A. Rankin, NIM A 566 (2006) 28

PAD RESPONSE: Relative fraction of 'charge' seen by the pad, vs x(pad)-x (track)

x(pad) - x(track) (mm)

24/05/2012

P. Colas - LCTPC

0.6

0.4

0.2

Micromegas Modules with resistive coating

24 rows x 72 columns of 3 x 6.8 mm^2 pads

Various resistive coatings have been tried: Carbon-loaded Kapton (CLK), 3 and 5 Mohm/square, resistive ink.

Uniformity (B=1T data)

MEAN RESIDUAL vs ROW number 7

Z-independent distortions

Distortions up to 50 microns for resistive ink Z=35cr (blue points)

Rms 7 microns for CLK film (red points)

-> select CLK

Micromegas results (B = 0T & 1T) Carbon-loaded kapton resistive foil

Gas: Ar/CF4/Iso 95/3/2

$$\sigma = \sqrt{\sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}}$$

 σ_0 : the resolution at Z=0 N_{eff} : the effective number of electrons C_d : diffusion constant

B=o T $C_d = 315.1 \ \mu m/\sqrt{cm}$ (Magboltz) B=1 T $C_d = 94.2 \ \mu m/\sqrt{cm}$ (Magboltz)

Micromegas results (B = 0T & 1T)**Carbon-loaded kapton resistive foil**

Gas: Ar/CF4/Iso 95/3/2

$$\sigma = \sqrt{\sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}}$$

 σ_0 : the resolution at Z=0 N_{eff} : the effective number of electrons C_d : diffusion constant

24/05/2012

Test in a high intensity π beam

Test at CERN (July 2010) at 180 kHz (5 x 2 cm² beam) showed no charging up and stable operation

24/05/2012

Highly Pixelized Readout

Bump bond pads for Si-pixel detectors serve as charge collection pads.

Timepix derived from Medipix-2 256 × 256 pixels of size $55 \times 55 \ \mu m^2$

Each pixel can be set to:

- TOT ≈ integrated charge
- Time between hit and shutter end

	ICOTPC-
1)Pre-process chip	2)Spin SU-8

3)UV exposure	4)Deposit metal
5)Pattern metal	6)Develop resist
8kU X300 50,	um 11 22 SEI
	1)Pre-process chip

Integration of the T2K electronics

- New detector : new routing to adapt to new connectors, lower anode resistivity (3 MΩ/sq), new res. foil grounding on the edge of the PCB.
- New 300 points flat connectors (zero extraction force)
- New front end: keep naked AFTER chips and remove double diodes (count on resistive foil to protect against sparks)
- New Front End Mezzanine (FEMI)
- New back-end for up to 12 modules
- New DAQ, 7-module ready and more compact format
- New trigger discriminator and logic (FPGA).

Thermal studies. IR camera shows hot spots (regulators, ADC). T-probes on every component.

2-phase CO2 cooling under study (KEK, Nikhef)

24/05/2012

Preliminary results (May 2011) : resolution (B=1T data)

Confirms previous measurements (excl. rows with ASICs in bad contact). Optimum resolution now obtained for peaking time below 200 ns : good for 2-track separation

New End Plate

Material budget requirement for final end plate: 8% X₀

→ Finite Element Analysis of final end plate Deflection of 220 µm for overpressure of 2.1 mbar Several materials and designs have been studied Strut space-frame design provides greatest strength-to-material.

Second end plate for LP designed and built (8.8 kg) Preliminary measurements of deflection are very close to requirements

Ion disk and gating

- During 1 ms every 200 ms, bunch crossings produce ionization in the gas: positive ions drift very slowly to the cathode. Ions produced in the avalanches near the anode drift all the way back to the cathode, resulting in a slowly moving ion sheet.
- Background evts have been simulated and charge density and resulting electric field estimated. Preliminary results :

Primary ionization gives up to $8.5 \ \mu m$ distortions (can be tolerated)

'ion sheet' effect results in 60 μ distortions (not acceptable)

With a gating grid near the anode, this can be reduced to a negligible amount.

-> gating is necessary between train crossings

Preparation for future electronics

- Design and optimization work in progress for a new chip GdSP, evolution from SALTRO16:
 - 64 or 128 channels
 - 130 nm technology
 - Very low noise
 - Integrated ADC
 - Low power consumption (all-inclusive 7-8 mW/ch)
 - 6 different power regions for power cycling
 - High level filtering (baseline subtraction, spike removal)

Gaseous detector Signal Processor, P. Aspell et al.

Software : track reconstruction and fitting

- Going from various programs for track reconstruction to one (Marlin TPC) within LC framework
 - Can serve for all beam test prototypes and for ILD simulation data
 - Allow multi-module alignment
 - Kalman filter track finding and fitting

CONCLUSIONS

- MPGDs have been shown to fulfill the requirements for the readout of a TPC for the LC.
- Pixel readout needs more development to gain in reliability and operability in large surfaces.
- Integration work (electronics and cooling) is going on, and practical production issues are addressed for the pad readout.
- All aspects/limitations are being addressed to be included in the 'Detector Baseline Document'

Excellent uniformity up to the edge of the module, thanks to the 'bulk' technology.

N_{eff} measurement with Micromegas

Averaging B=oT and B=1T data, modules 4, 5 and 3 (excluding ink module):

• N_{eff} = 38.0±0.2(stat) (systematics difficult to assess)

•
$$\sigma_0 = 59 \pm 3 \,\mu\text{m}$$

 $N_{eff} = \frac{1}{<1/N>} \frac{^2}{}$

D. Arogancia et al., NIM A 602 (2009) 403

Note that 1/<1/N> = 47.1 from Heed for 5 Gev electrons on 6.84mm long pads.

Thus N_{eff} has to be between 23.5 (for exponential gain fluctuations) and 47.1 if there are no gain fluctuations. 1/<1/N> = 34.9 for 5.4 mm pads (GEM case).