The LUX Dark Matter Detector

F. Neves on behalf of the LUX Collaboration

1×11,×11/1:2

12th Pisa Meeting on Advanced Detectors

Motivation

F. Neves, LUX Collaboration 12th Pisa Meeting on Advanced Detectors

Dark Matter candidate: WIMPs

• M_{WMP} in the 10 GeV – 1 TeV range;

- WIMP do not interact via strong/electromagnetic forces;
- Indirect detection: WIMP annihilation products;
- Direct detection: WIMP-nucleus scattering:
 - Spin Independent: $\sigma_{_{SI}} \sim A^2$ (dominant for A>30);

• Spin Dependent: $\sigma_{_{SD}} \sim J(J+1);$

For each target both the **recoil energy** spectrum and the **interaction rate** (and its time modulation - DAMA) depend on the local WIMP density and velocity distribution model.

Why Liquid Xenon for direct WIMP detection?

- High atomic number (A~131): good for spin-independent interactions;
- ~1/2 odd isotopes in natural Xenon: spin-dependent sensitivity;
- Natural Xe has no long-lived radioactive isotopes: plus Kr can be reduced to ppt level;
- High density (~3 g/cm³): manageable detector volumes;
- Allows relatively easy scalability to ton-level detectors;
- Large light output / Sensitivity to single ionization electrons;
- Nuclear recoil vs e⁻/γ-ray discrimination;

Allows self- passive shielding by selection of an inner fiducial volume and active- vetoing using interactions on the outer volume;

depth (cm)

-10

F. Neves, LUX Collaboration

12th Pisa Meeting on Advanced Detectors

log_(dru)

0.5

LUX is a 2-phase Xenon TPC

• (x,y) position reconstruction: from the S2 light pattern;

Depth of interaction (z): e⁻ drift time in the liquid (time difference between S2 and S1);

 Prompt scintillation (S1): energy scale (keVee);

Proportional scintillation (S2): measurement of the e⁻ charge extracted from the liquid to the gas.

 S2/S1 depends on the ionising particle (nuclear/electron recoil): 99.5% ER/NR rejection expected (50% NR acceptance).

So... what's new in LUX?

Its the bigger double-phase xenon detector (~350 kg) up to now!

- Allows to have bigger fiducial volume;
- Take advantage of the self-shielding properties of liquid Xenon;

• Key technologies for the next generation of tonne-scale detectors:

- Instrumented water shielding;
- Thermosyphon cryogenics;
- Titanium vessel (low background);
- Detector calibration using ⁸³Kr^m (not covered in this talk);

LUX detector: overview

- 61 top + 61 bottom PMTs viewing ~300 kg of xenon (expected ~100 kg fiducial);
- Ultra low background PMTs (12 mBq/PMT);
- Titanium cryostat (<0.2 mBq/kg);</p>
- Internal copper shield;
- Active region defined by PTFE slabs (high reflectivity for xenon scintillation light);
- Maximum drift time: 50 cm;
- High flow plumbing and heat exchanger for rapid (>30 SLPM) circulation through external purifier;

LUX detector: internals

LUX detector: water tank

• Ultra-low background facility:

- all external backgrounds sub-dominant;
- γ -ray event rate reduction: ~10⁻⁹;
- n(E>10 MeV) rate reduction: $\sim 10^{-3}$;

Water tank: d=8m, h=6m

- 300 tonnes, 3.5m thickness on the sides

Cherenkov muon veto:

- 20 PMTs (10" diameter)

4850 feet in UG Sanford Lab 2.75 m 3.50 m 1.20m

F. Neves, LUX Collaboration

Surface detector deployment

Test everything (as extensively as possible) before Underground deployment.

Surface run: cooling system

F. Neves, LUX Collaboration

Surface run: DAQ system

- Samples at 105 MHz with 14 bit depth;
- All acquisition channels are working:
 - Surface run generated ≈3 TB of data;
- 122/122 PMTs are working:
 - one broken base in lower PMT array;

F. Neves, LUX Collaboration

Surface run: light collection

• γ -rays (662 keV) from ¹³⁷Cs (collimated):

- ~8 phe/keVee in detector center (@ zero electric field);
- Comparison with MC simulation: $R_{pTFE} > 95\%$; $\lambda_{abd} > 5 m$;

F. Neves, LUX Collaboration 12th Pisa Meeting on Advanced Detectors

Surface run: electron life time and energy resolution

Using alphas from ²²²Rn injection to monitor electron life time: ~90 μs
Failed plumbing joint limited circulation/purification performance;
Energy resolution (Eα = 5.5 MeV) ~ 3%;

F. Neves, LUX Collaboration

Surface run: position reconstruction

• The **light collection efficiency** ($\varepsilon(x,y,z)$) is obtained by **iteratively** fitting to each PMT channel a common cylindrical **response profile** ($R_{1..122}$) extending away from its vertical axis;

• $R_{1..122}$ adjusted using background data;

• Reconstruction of $(x,y)_{s_2}$ from α interactions (E = 5.5 MeV) allows to resolve the anode grid (5 mm pitch);

12th Pisa Meeting on Advanced Detectors

Top PMT array

L E₂ >> E

Underground detector deployment

• Underground installation started at may 21 / Finish installation by Sep. 2012;

Finish commissioning by Nov. 2012 / Start taking DM search data by winter 2012/13;

... 300 days result by winter 2013/14.

(Expected) WIMP sensitivity

<1 NR event / 300 days in 100 kg fiducial volume!</p>

F. Neves, LUX Collaboration 12th Pisa Meeting on Advanced Detectors

Beyond LUX: LZ

• 7-tonne active TPC inside an instrumented water tank (Davis Cavern @ Sanford);

- Active shield + instrumented Xenon skin;
- Background-free run feasible (assumed 99.75% discrimination);

F. Neves, LUX Collaboration

Summary

- Deployed into water tank shield;
- Stable cryogenic control for ~100 days of running:
 - Purification @ 35 SLPM (~0.3 ton/day);
- Working PMTs, Trigger and DAQ;
- Energy resolution: $\sim 3\%$ (for E_a = 5.5 MeV);
- Excellence light collection (8 phe/keVee in center @ 0-field, for E_y=662 keV);
- Important validation of the GEANT4 simulation parameters (R_{PTFE}, λ_{abs});
- Electron life time: ~90 μ s (limited by circulation failure, already solved!);
- Position reconstruction: first assessment very promising;
- Drift field limited to 120 V/cm (by electroluminescence from the cathode grid); (cathode grid being upgraded to mitigate the electroluminescence)

Catholic

dê,

The LUX Collaboration

PI, Professor, Physics Group Leader

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Professor

PI, Professor Professor

Senior Engineer

Senior Machinist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Professor

Postdoc

Professor

Brown	
Richard Gaitskell	PI, Professor
Simon Fiorucci	Research Associate
Monica Pangilinan	Postdoc
Jeremy Chapman	Graduate Student
Carlos Hernandez Faham	Graduate Student
David Malling	Graduate Student
James Verbus	Graduate Student
Case Western	
Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Mike Dragowsky	Research Associate Profe
Carmen Carmona	Postdoc
Ken Clark	Postdoc
Tom Coffey	Postdoc
Karen Gibson	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Pech	Graduate Student
🔫 Harvard	
Masahiro Morii	PI, Professor
Michal Wlasenko	Postdoc
John Oliver	Electronics Engineer
Lawrence Berkeley +	UC Berkeley
Bob Jacobsen	Professor
David Taylor	Engineer
Mia ihm	Graduate Student
Lawrence Livermore	
Adam Bernstein	PI, Leader of Adv. Detecto
Dennis Carr	Mechanical Technician
Kareem Kazkaz	Staff Physicist
Peter Sorensen	Postdoc
University of Marylan	d

David Taylor	
Mia ihm	

m Bernstein	PI, Leader of Adv. Detectors Group	
nis Carr	Mechanical Technician	
eem Kazkaz	Staff Physicist	
er Sorensen	Postdoc	
University of Maryland		

Carter Hall Douglas Leonard

F. Neves, LUX Collaboration

Postdoc

PI, Professor

Imperial College London

Henrique Araújo Tim Sumner Alistair Currie

н

sso

Harry Nelson
Dean White
Susanne Kyre
LIP Coi
Isabel Lopes
Jose Pinto da Cunha
Vladimir Solovov
Luiz de Viveiros
Alexander Lindote
Francisco Neves
Claudio Silva

SD School of Mines

Xinhua Bai Mark Hanardt

Texas A&M

James White	
Robert Webb	
Rachel Mannino	
Tyana Stiegler	
Clement Sofka	
UC Davis	
Mani Tripathi	
Robert Svoboda	
Richard Lander	
Britt Hollbrook	
John Thomson	
Matthew Szydagis	
Jeremy Mock	
Melinda Sweany	
Nick Walsh	
Michael Woods	
Sergey Uvarov	

Imperial College London PI, Senior Lecturer

Professor

PhD student

DI Professo

UC Santa Barbara

1013011	11, 110103301
/hite	Engineer
e Kyre	Engineer
LIP Coimbra	
opes	PI, Professor
nto da Cunha	Assistant Profess
r Solovov	Senior Researche
Viveiros	Postdoc
der Lindote	Postdoc
co Neves	Postdoc
Silva	Postdoc

88 University of Rochester

Frank Wolfs Wojtek Skutski Ervk Druszkiewicz Mongkol Moongweluwan

PI. Professor Senior Scientist Graduate Student Graduate Student

PI, Professor

Postdoc

Postdoc

Postdoc

U. South Dakota

Dongming Mei Wengchang Xiang Chao Zhang Oleg Perevozchikov

Daniel McKinsey Peter Parker James Nikkel Sidney Cahn Alexey Lyashenko Ethan Bernard Blair Edwards Louis Kastens Nicole Larsen

PI, Professor
Professor
Research Scientist
Lecturer/Research Scientist
Postdoc
Postdoc
Postdoc
Graduate Student
Graduate Student

12th Pisa Meeting on Advanced Detectors

collaboration meeting in Lead, SD in March 2011.