

FP7 Project, Call Health 2010

A Multimodal Ultrasonic Probe Featuring Time of Flight PET in Diagnostic and Therapeutic Endoscopy

© 2008 CERN, for the benefit of the CMS Collaboration

"The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 256984. This research is also supported by the Marie-Curie Actions ITN: PicoSEC-MCNeT under Grant Agreement No. 289355."

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Partners in this project:

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Thomas C. Meyer, CERN, Geneva On behalf of the EndoTOFPET-US Collaboration 7

Thomas C. Meyer, CERN, Geneva On behalf of the EndoTOFPET-US Collaboration

Pancreas

Duodenum

8

Project Objectives

- Development of new biomarkers;
- First clinical targets: pancreatic & prostatic cancers;
- Develop a dual modality PET-US endoscopic probe with...
 - Spatial resolution: 1mm;
 - *Timing* resolution: 200ps *FWHM* coincidence;
 - High *sensitivity* to detect 1mm tumors in a few minutes;
 - *Energy* resolution: sufficient to discriminate against Compton events .

CERNY

PET Configuration

• Asymmetric:

- One PET detector close to ROI
 - incomplete (non-2π) projections;
 - \rightarrow Simulation and reconstruction challenge.

• Endoscopic:

- One PET head inside the body
 - \rightarrow Extreme miniaturization;
 - \rightarrow Background from close organs (e.g. heart, bladder);
 - →Varying geometry (body & organ motion)

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Two Different Probes...

Option 1: prostate

	Prostate	
Crystal Matrix	[mm ²]	14 x 15
Fiber length	[mm]	10
Fiber pitch x/y	[µm]	780/800
# Fibers in x/y		18x18 (324)
Diffractive optics	[mm]	2
SPAD array thickness	[mm]	0.75
PCB thickness	[mm]	1
# Readout layers		1
Total thickness	[mm]	18
Diameter of detector	[mm]	23
Length of detector	[mm]	22

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Two Different Probes...

Option 1: prostate

Option 2: pancreas

		Prostate	Pancreas
Crystal Matrix	[mm ²]	14 x 15	7 x 15
Fiber length	[mm]	10	5 (9)
Fiber pitch x/y	[µm]	780/800	780/800
# Fibers in x/y		18x18 (324)	9x18 (162)
Diffractive optics	[mm]	2	2
SPAD array thickness	[mm]	0.75	0.75
PCB thickness	[mm]	1	1
# Readout layers		1	1
Total thickness	[mm]	18	13
Diameter of detector	[mm]	23	15
Length of detector	[mm]	22	22

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Technical Challenges

Calls for innovative solutions

- <u>Very thin crystal pixels</u>/fibers for the internal probe;
 - for high granularity and sub-millimeter spatial resolution;
- <u>Temporal collimation</u> with TOF: CTR < 200ps *FWHM*;
 - for background rejection outside ROI of 30mm;

- <u>Digital light detection</u>: SiPM with single SPAD readout;

- for single optical photon counting and ultimate timing resolution;
- <u>Diffractive optics</u> light concentrators ;
 - for overcoming loss of sensitive area and optimizing light collection;
- <u>High level of integration</u> for electronics & mechanics;
 - For miniaturization (±5µm precision);

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)

2.) Diffractive Optics3.) Scintillators4.) Integration

5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)
- 2.) Diffractive Optics
- 3.) Scintillators
- 4.) Integration
 - 5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Photodetectors: Choices

The *a*-SiPM:

- low rise time;
- high capacitance;
- reasonable fill factor (FF);
- mature technology;
- commercially available
- time over threshold discr.
- standard (HP)TDC readout.

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

a-SiPM versus d-SiPM

The *a*-SiPM:

- low rise time
- high capacitance;
- reasonable fill factor (FF);
- mature technology;
- commercially available
- time over threshold discr.
- standard (HP)TDC readout.

The *d*-SiPM:

- very low rise time;
- individual SPAD readout
 - \rightarrow single photon counting \rightarrow optimum timing
- high functionality
- ambitious/risky
- novel technology
- optimized for endoscope

Thomas C. Meyer, CERN, Geneva On behalf of the EndoTOFPET-US Collaboration **Ť**∪Delft

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)
- 2.) Diffractive Optics
- 3.) Scintillators
- 4.) Integration
 - 5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

a-SiPM: Test Scenario

- For an intrinsic SiPM timing evaluation, see poster by <u>Stefan Gundacker/CERN;</u>
- Coincidence time resolution (CTR) measured with scintillating "reference" crystals and the NINO amplifier/discriminator;
- Use high-BW scope (LeCroy DDA 735Zi, 40GS/s) or HPTDC.

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

a-SiPM: Evaluation & Selection

- Suitable SiPMs are commercial MPPCs by <u>Hamamatsu Photonics;</u>
- Evaluation of photodetectors via measurement of the (CTR):

3mm	MPPC S10931-	# SPADs	Fill Factor [%]	V _{Manuf.} [V]	V _{optimum} [V]	DCR ^{*)} [MHz]	NINO Thr. [mV]	CTR <i>FWHM</i> [ps]	
3mm	-025P	14'400	30.8	71.49 71.44	73.0	3.2	150	340±9	Note: Optimization of
	-050P	3'600	61.5	72.11 72.09	72.4	1.1 1.0	100	220±4	SiPMs done with non- optimized crystals.
	-100P	900	78.5	70.81 70.87	70.3	9.0 9.5	300	280±9	

*) DCR = Dark Count Rate

S. Gundacker et al., "A Systematic Study to Optimize SiPM Photo-Detectors for Highest Time Resolution in PET" (TNS-00225-2011)

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)
- 2.) Diffractive Optics
- 3.) Scintillators
- 4.) Integration
 - 5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

d-SiPM for endo-TOFPET-US

- Capability to gather the statistics of the first individual photons that reach a cluster;
 - Intrinsically best timing performance \rightarrow attractive for TOF;
- Balance functionality and PDE;
- Design must adapt to process-specific effects:
 - high DCR from tunneling and trap-assisted noise;
 - after-pulsing;
 - lower PDP than with conventional *a*-SiPMs.
- Requires multi-parameter optimization/simulation.

^{*)} M. Fishburn & E. Charbon, "System Tradeoffs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators", IEEE-TNS, VOL. 57, NO. 5, OCTOBER 2010. S. Seifert et al., "The lower bound on the timing resolution of scintillation detectors", Phys. Med. Biol. 57 (2012) 1797–1814

La Biodola, Italy – May 20-26, 2012

On behalf of the EndoTOFPET-US Collaboration

d-SiPM: Characteristics & Results

Characteristic Parameters of <i>d</i> -Si "endo-TOFPET-US" Test Struct	Commercia <i>d-</i> SiPM	
Cluster Pitch [µm]	800	4000
# SPADs/cluster	416	6400
Maximum Fill Factor [%]	50	77
PDP [%] @ 430nm	32	31
PDE [%]	15 🔶	24
# TDCs / Cluster Column	48	1
# Time Of Arrivals (TOA) / cluster	48	1
TDC Resolution or LSB [ps]	51.8	-
Clock Frequency [MHz]	25	200

Boost PDE optically!

First evaluation results:

DCR (0 °C): 25kHz/SPAD \rightarrow DCR (40 °C): 80kHz/SPAD <u>NEED COOLING OF *d*-SiPM</u>!

<u>Masking</u> of noisy pixels ("screamers"): DCR \searrow but also PDE \searrow <u>Lowering</u> excess bias: DCR \searrow but also PDE \searrow

Example of multi-parameter chip optimization:

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)

2.) Diffractive Optics

- 3.) Scintillators
- 4.) Integration
 - 5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Objective: Recover light lost (50%) in the dead zones of the *d*-SiPM

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)

2.) Diffractive Optics

3.) Scintillators

4.) Integration

5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Crystal Performance

Crystal performance is "gauged" by <u>light yield (LY)</u> and <u>coincidence time resolution (CTR)</u>:

Crystal	Size [mm ³]	Decay Time [ns]	Light Yield [Ph/MeV]	CTR [ps] <i>FWHM</i>	
LuAG:Ce	2 x 2 x 8	60	15'000	872 ± 50	
LuAG:Pr	2 x 2 x 8	20	10'400	672 ± 30	
Crystal (2x2x10mm ³)	Manufacturer	Decay Time [ns]	Light Yield [Ph/MeV]	d CTR [ps] <i>FWHM</i>	
LGSO:Ce	Hitachi	42.50	19'500	176	
LYSO:Ce	SIPAT	42.60	19'000	206	
LYSO:Ce	Proteus	41.40	18'000	175	
LYSO:Ce	СРІ	45.00	17'400	184	
LSO:Ce	PML	47.00	16'300	206	
LSO:Ce	CTI	43.50	23'000	190	
LSO:Ce:Ca	Agile	32.00	15'700	170	

Light yield measured with PMT (linear!); crystals wrapped and mounted "small-face-to-PMT" with grease; source: ¹⁶⁷Cs.

PMT: Photonis XP 2020 Q

CTR measurements were made with the Hamamatsu MPPC S10931-050P; all crystals were fully wrapped and coupled <u>with</u> grease to the MPPC.

E. Affray et al., Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 10.1109/NSSMIC.2011.6154402

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Crystal performance is "gauged" by <u>light yield (LY)</u> and <u>coincidence time resolution (CTR)</u>:

Crystal	Size [mm³]	Decay Time [ns]	Light Yield (Ph/MeV]	CTR [ps] <i>FWHM</i>	
LuAG:Ce	2 x 2 x 8	60 SLOW	15'000	872 ± 50	
LuAG:Pr	2 x 2 x 8	20	10'400 UV.	672 ± 30	
Crystal (2x2x10mm ³)	Manufacturer	Decay Time [ns]	Light Yield [Ph/MeV]	CTR [ps] <i>FWHM</i>	
LGSO:C	Hitachi	42.50	19'500	176	
LYSO:Ce	SIPAT	42.60	19'000	206	
LYSO:Ce	Proteus	41.40	18'000	175	
LYSO:Ce	CPI	45.00	17'400	184	
LSO:Ce	PML	47.00 16'300		206	
LSO:Ce	CTI	43.50	23'000	190	
LSO:Ce:Ca	Agile	32.00 68	St. 15'700	170	

Light yield measured with PMT (linear!); crystals wrapped and mounted "small-face-to-PMT" with grease; source: ¹⁶⁷Cs.

COFCU STUDE

PMT: Photonis XP 2020 Q

CTR measurements were made with the Hamamatsu MPPC S10931-050P; all crystals were fully wrapped and coupled <u>with</u> grease to the MPPC.

E. Affray et al., Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 10.1109/NSSMIC 2011.6154402.

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Detector R&D

1.) Photodetectors

- The analog SiPM (*a*-SiPM)
- The digital "Endo-TOFPET" SiPM (*d*-SiPM)
- 2.) Diffractive Optics
- 3.) Scintillators
- 4.) Integration
 - 5.) Readout and Data Acquisition

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

CMOS (4x4) array:

- each with $800 \times 800 \mu m^2$ area
- SPAD pitch 50µm (x), 30µm (y)
- 192 TDCs total

Photo of MPPCs courtesy of Hamamatsu Photonics

Monolithic (4 x 4) MPPC array:

SPAD pitch: 50µm

each with 3 x 3mm² area

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012 Thomas C. Meyer, CERN, Geneva On behalf of the EndoTOFPET-US Collaboration

Sensitive detector: 16 x16 detector units (4096 ch.) with ~100 μ m gap; Electronics: dedicated readout chips on PCBs (512 ch./PCB) ; Cooling: detector stabilized to room temperature via Peltier elements (expected 30mW/ch); Tracking: detector mounted on a robotic arm for mechanical tracking (6D info, <1mm accuracy); Curved geometry: facing the organ during diagnose (r = 21cm).

2012 Pisa Meeting on Instrumentation La Biodola, Italy – May 20-26, 2012

Summary

- Frontline research in the domain of:
 - digital photodetectors;
 - scintillators & optical systems;
 - medical instrumentation.
- Large knowledge and technology transfer between HEP, industry and medicine;
- Defines a roadmap for the development of a new generation of multimodal endoscopic probes.
- Thanks to the endo-TOFET and PicoSEC-Coll.
- We still seek ESR applications for the Marie-Curie ITN
 - Please contact us or our Marie-Curie-Homepage:
 - <u>http://picosec.web.cern.ch/picosec/home.html</u>