The AMS-02 Detector: Design and Operation onboard the International Space Station

G. Ambrosi INFN Perugia, Italy

AMS on the International Space Station

- Cosmic Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e⁺, p
 , γ)
- Relative abundance of nuclei and isotopes in primary cosmic rays
- γ ray astrophysics

The experimental challenge: perform accurate, high statistics, long term measurements of charged cosmic rays (0.5 GV – O(TV)) and γ rays (E>1GeV)

High Energy CR flux and composition

G. Ambrosi, May 25th 2012

High Energy CR flux and composition

G. Ambrosi, May 25th 2012

AMS-01 pilot experiment: STS91, June 2nd - 12th 1998

- 10 days of data taking in orbit:
 - 400 Km altitude
 - latitudes +51.7°
 - all longitudes
- 10⁸ events recorded
- Physics results (Phys. Rep. 366 (2002) 331)
 - precise measurements of primary fluxes
 - detection of secondary fluxes (quasi trapped)
 - antimatter limit at 10⁻⁶

The instrument we need has ...

- performance a la `particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly work in the space environment:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100^{\circ}C$)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in weight (15000 lb), power (~2KW), bandwidth and maintenance
- Compliant with Electromagnetic Interference and Electromagnetic Compatibility specs

AMS international collaboration 16 Countries, 60 Institutes and 600 Physicists, 17 years

The detectors and electronics were built all over the world G. Ambrosi, May 25th 2012 and assembled at CERN, Switzerland.

AMS: A TeV precision, multipurpose spectrometer

TRD Identify e+, e-

- 20 layer radiator/straw tubes
-Xe/CO₂ 80%/20% gas
- 5284 channel
-F. Spada poster

Silicon Tracker Z, P

9 layer double sided detector
192000 high dyn. range readout channel
low material budget
D. Rapin poster

ECAL E of e+, e-, γ

-3D sampling calorimeter

- 17 X₀
- 9 superlayer lead/fibers
- -324 MAPMT
- 2916 channels

TOF Particles and nuclei are defined by their **Z**, **E** charge (Z) and energy ($E \sim P$) - 4 layer scintillators - 48 PM 1 1 -1536 channels - V. Bindi poster TRD Magnet TOF 3-4 - B ~ 0.14 Tesla 5-6 640 Nd-Fe-B blocks 7-8 - 1900 Kg TOF **RICH** RICH Ζ, Ε 9 - Areogel and NaF radiator FCA - 680 MAPMT - 21726 channels

Z, P are measured independently by the Tracker, RICH, TOF and ECAL

AMS Electrical Interfaces on ISS

Power: 109-124VDC ~2KW

LRDL

for Cmd & Mon 1553B Bus 1 Kbit/s in 10 Kbit/s out 10 B/sec CHD

HRDL

for Event Data Taxi F/O <13Mbit/s>_{orbit}

xRDL: Duty cycle ~50-70%

AMS **TDRS** EVA UMA **International Space Station** Monitoring & Command ata **Power** LRDL HRDL M&C Data ence COP ີ່ວັ ĩ POCC Ea

G. Ambrosi, May 25th 2012

AMS in ESTEC (ESA test facility)

um test (~400 h, P<10⁻⁶ mbar, T -90°C +40°C

EMI/EMC test

10_

STRUCTURAL TEST

Test at components level and at system level

on EM, QM, FM

Test Beam Results with permanent magnet – 8-20 Aug 2010

G. Ambrosi, May 25th 2012

Electron Efficiency (%)

ebal Sit. 🗸 🗸			
+			
			AUS-02
180 secs.)		Ú	
GTSN			
		Until now or 16:35 16/05/2011	
JPD-A JPD-B	СНЕСК		
	MPD @ TMPD2 13.875 *C	Everything OK	
	M 11.9375 *C		
	GPS 12.5 °C		
	TT 14.0625 *C		
	ТТСВР 16.0625 °С		
	TTCBS 16.0625 'C		
	UGPD 13.75 °C		
	UG 12.5 °C		
	CCEB Signal Side 13.625 °C		
	CCEB Power Side 13.5625 °C		
	SPD0 @ TSPD1 13 6875 *C		
	S0 11 9375 /C		
	SHV0 13.8125 'C	k	
	SPD1 @ TSPD3 13.5625 'C		
	S1 12.0 'C		
	SHV1 13.0625 'C		
	SPD2 @ TSPD4 13.625 'C		
	S2 14.0625 'C	2.5 h after the launch	
	SHV2 13,3125 °C		
	SPD3 @ TSPD6 13.875 *C		
	S3 14.3175 'C		

FROM SHUTTLE TO ISS

Orbital DAQ parameters

Time at location [s]

Particle rates: 200 to 2000 Hz per orbit

Orbit average: DAQ efficiency 85% DAQ rate ~530Hz

I year of data: I.6 10¹⁰ events 35 TB raw events

G. Ambrosi, May 25th 2012

Acquisition rate [Hz]

AMS-02 Custom/Common Readout Unit

G. Ambrosi, May 25th 2012

Data from the 1st few minutes – 20 GeV Electron, 19 May 2011

Data from the 1st few minutes – 42 GeV/c Carbon, 19 May 2011

AMS data on ISS

Photon 40 GeV, 23 May

205 GeV positron

on orbit performance

TRD gain calibration

Alignment stability

AMS data on ISS: He rate

tomography of support plane

He missing particles extrapolated to the first mechanical Tracker support

Conclusions

- AMS02 is in orbit since May 16th 2011
- No damage due to the launch stress or to the space environment, all the system are working in both the primary and redundant part
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011
- Ground operations (POCC and SOC) run smoothly
- Detector calibration (alignment, e/p rejection, charge id, etc.) are well advanced
- 10+ years on board the ISS: great discovery potential

Science will come soon!

AMS Data Flow: POCC@JSC configuration

Istituto Nazionale di Fisina Nucleare

AMS data streams

AMS laptop on ISS

Gabriele Alberti

G. Ambrosi, May 25th 2012

POCC at CERN (Switzerland)

AMS POCC: 5 positions (24/7/365 for 20 years?)

Onboard Short Term Planner Viewer

POIC: 155 Ops - External User - Windows Internet Explorer				_
💽 🗢 🖉 https://roocil.dmz.hosc.msfc.nasa.gov/			🗾 🔒 🗟 🕁 🗙 Google	
Edit View Favorites Tools Help				
Favorites 🙀 😰 HOSC Portal 🙋 OSTPV				
POIC: ISS Ops - External User			🏠 • 🗟 - 🖻 🖶 • Page •	Safety 🕶 Tools 👻 🔞
IPV	OCTDV Onboard Short Term		OSTPV	
a set la classical la ser la last	Modified:	1220	4 A MON THE WED THU FRI SAT	SUN N N
Auto Retriesh Prets Task List Set Time Real Time 3477	/06:58:06	108	346 347 348 349 350 351	352
uston 346-3 21,		. [01		<u></u>
т зал		07, 07, 08		
A				
ORDIT NI DODA	0000	2007	2020	
/Night	2880	2887	2808	
	CHECS-KU D/L-CMD		JEM-VIDEO B-DOWNLINK MDCA-FLEX-TEST CMD	
	FPMU-DATA-DOWNLINK			
	HRDL-LEHX-3M			
-BD CHECS-KU D/L-CMD	PACE2-OPS-TST CMD			
FPMU-DAT	A-DOWNLINK			
OCA-MAIL	SYNC	[
	COMMS-FSL HRD-DL	i i		
	RS-CONT(RS-CONTG-TL	M RS-CONTG-TLM CCS-T VS PRO-C	FDS-SI
ONTO		DPC	PRO-CIR ACT-CMD	
3D				
	AMS-PL OPS-CMD			
	ELC1-RESOURCE-TRK			
	ELC2-RESOURCE-TRK			
	ELC3-RESOURCE-TRK			
	ELC4-RESOURCE-TRK			
	HREP-PL-OPS			
SA T	HRE	HREP-SCENE-DNLK	HREP-SCENE-DNLK	
	MISSE8-PL-OPS			
	RRM-H/W_PWR-ELC4			
	HREP-SCENE-DNLK STPH3-PL-OPS			
	ALTEA-SHIELD-OPS			

G. Ambrosi, May 25th 2012

Software Development and Test Facilities

(A) AMS Simulator Laboratory at CERN

- 1. Flight Simulator
- 2. ISS Avionics Simulator
- 3. AMS Laptop Simulator
- 4. Development and Test Facilities

(B) AMS Flight Equivalent Unit at JSC Software Development and Integration Lab (SDIL)

(C) AMS ISS Laptop and AMS Ground Software checkout at Marshall Space Flight Center

Comparison between TB and MC p/pi 60, 80, 100, 120, 180 and 400 GeV

