## Study of Rare Alpha Decays with Scintillating Bolometers

## Laura Cardani Sapienza, University of Roma and INFN Roma

Standard detectors (gas counters, semiconductors..) do not achieve the necessary sensitivity to study rare α decays New detection technique: scintillating bolometers Double read-out



Heat released by an interaction

- Excellent energy resolution

- Very high efficiency

Recognition of the nature of the interaction ( $\alpha$ , electrons) through the scintillation yield

Scintillation light emitted

by the same interaction

Thanks to this technique we could study the rare  $\alpha$  decays of several isotopes We operated a PbWO<sub>4</sub> bolometer in order to study the lead isotopes, achieving an unprecedented sensitivity on their decays.

| Isotope             | Energy of emitted $\alpha$ | Sensitivity on $\alpha$ decay |
|---------------------|----------------------------|-------------------------------|
| $^{204}$ Pb         | 1971.8 keV                 | $\sim 10^{20}$ years          |
| $^{206}\mathrm{Pb}$ | 1136.6 keV                 | $\sim 10^{21}$ years          |
| <sup>208</sup> Pb   | 391.5 keV                  | $\sim 10^{20}$ years          |
| <sup>207</sup> Pb   | 518.8 keV                  | $\sim 10^{19}$ years          |

Rejection of the background due to electrons, muons,  $\gamma$ 's..

Friday, May 18, 2012

## Study of Rare Alpha Decays with Scintillating Bolometers

Laura Cardani Sapienza, University of Roma and INFN Roma

We used the same technological approach to study the rare decay of  $^{209}Bi$ 



 $^{209}$ Bi was considered as the heaviest stable isotope, until its  $\alpha$  decay on the ground state of  $^{205}$ Tl was observed.

We operated a 889 g BGO scintillating crystal in a cryostat in the Laboratori Nazionali del Gran Sasso (L'Aquila, Italy) in order to detect the decay on the first excited state.

Heat [keV $_{\alpha}$ ]



First evidence of the excited state decay of <sup>209</sup>Bi:

- the background due to electrons ( $\beta/\gamma$  band) is fully disentangled thanks to the read-out of the light

-  $T_{1/2}(^{209}\text{Bi}) = (2.01 \pm 0.08) \ge 10^{19} \text{ years}$ 

- Branching ground/excited level transitions = (98.8 ± 0.3) %

Phys. Rev. Lett. 108 (2012) 062501