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B tagging with neural network: 
from LEP to JEDI-net and beyond



The origins of NN for b tagging
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๏Two different problems: 

๏B flavor tagging: tell the difference between a B and 
an anti-B 

๏b-jet tagging: identify a jet from a b quark, 
differentiating it from a jet from gluons or light 
quarks 

๏Traditionally approached as two different problems

B flavor tagging and b-jet tagging
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๏B flavour is the essential tool for CP 
violation studies at B physics 
experiments 

๏It is ultimately performed measuring 
the charge of specific particles that 
correlate to the B meson flavor 

๏The charge of a lepton from the B 
vertex 

๏The charge of a kaon from the B 
vertex 

๏… 

๏With LEP, NNs were introduced to the 
task 

๏BaBar & Belle inherited this 

๏Similar approaches at hadron 
colliders, were also same-side tag 
matters

B flavor tagging

7



b-jet tagging
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๏Tagging b-jets implies exploiting the 
secondary vertex 

๏b fly before decaying 

๏separation between primary and 
secondary vertex is unique of b vs 
gluon of u,d,s jets (charm is in 
the middle) 

๏Several features are computed from 
the primary vertex to quantify this 
signature 

๏Correlated, but not 1-to-1 

๏Usually combined in a multivariate 
analysis (likelihood ratio, neural 
networks, BDT)



๏For a good B flavor tagging one 
needs a particle identification 
(e.g., kaon vs pion) 

๏LHCb, B factories etc. used 
Cherenkov detectors 

๏ATLAS and CMS don’t have PID 
(yet. It will come @HL-LHC with 
the timing detectors) 

๏For a good b-jet tagging one needs 
a good secondary-vertex 
resolution, which is also relevant 
to measure oscillations 

๏All modern detectors have a 
pixel-based inner tracker

Different problems, different detector requirements 
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๏These two problems have many common points 

๏Both problems are binary classifications 

๏One engineers several quantities to 
address each problem separately  

๏A multivariate approach exploits the 
correlations between these variables 

๏The solutions to these problems evolved 
according to the same pattern 

๏NNs as a first MVA attempt 

๏BDTs took over 

๏NNs back with Deep Learning 

๏Several architectures tried, until 
solution converged to graph networks

Two problems, one solution
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๏During Run-1, CMS used a 
combined secondary vertex (a 
likelihood ratio), similar to 
what was used at Delphi 

๏Then ML was introduced  

๏NNs were used early in the 
game 

๏There was a BDT parenthesis 

๏A Deep Neural Network 

๏A Recurrent network 

๏The ultimate solution: a graph 
network

The evolution of b-jet tagging
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Deep Neural Networks
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๏In a feed-forward chain, 
each node processes what 
comes from the previous 
layer 

๏The final result (depending 
on the network geometry) is 
K outputs, given N inputs

yj = f (3)(Σlw(3)
jl f (2)(Σkw(2)

lk f (1)(Σiw(1)
ki xi + b(k)

k ) + b(2)
l ) + b(3)

j )

๏One can show that such a mechanism allows to learn generic 
ℝN→ℝK functions



Recurrent Neural Networks
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๏Recurrent architectures are 
designed to process 
sequences of data 

๏Then idea is to have 
information flowing in the 
network while the sequence 
is sequentially processed 

๏Through this idea, recurrent 
networks mimic memory 
persistence  

๏It takes as input directly 
the “raw data” (particle 
momenta) and it engineers 
features by itself

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20
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Point clouds and graph nets
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๏Graphs Nets are architectures based on 
an abstract representation of a given 
dataset 

๏Each example in a dataset is 
represented as a set of vertices 

๏Each vertex is embedded in the 
graph as a vector of features 

๏Vertices are connected through 
links (edges) 

๏Messages are passed through links 
and aggregated on the vertices 

๏A new representation of each node 
is created, based on the 
information gathered across the 
graph



JEDI-net
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๏INs process a list of 
No x P inputs in pairs, 
through Receiving and 
Sending matrices  

๏The effect of the 
interaction is learned 
by fR and combined with 
the input to learn 
(through fo) a post-
interaction 
representation 

๏The procedure can then 
be iterated to produce  
further steps i the 
interactions
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
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Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.
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Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f
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, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices
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๏ In this case, there is 
no system update needed 
(i.e., no cycle) 

๏ It is sufficient to use 
the post-interaction 
representation as input 
to a classifier that 
returns the jet 
category 

๏ The three networks are 
simultaneously 
optimized: the learned 
representation is 
chosen to help the 
classification

JEDI-net



Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.
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๏Recently, CMS applied the same paradigm shift to 
B-flavor tagging 

๏Same side (SS): exploits the Bs fragmentation 
1. SS tagger: leverages charge asymmetries in 
the Bs fragmentation 

๏Opposite side (OS): exploits decay products of 
the other 

1. b-hadron in the event 

2. OS muon: leverages b ➜ μ-X decays  

3. OS electron: leverages b ➜ e-X decays  

4. OS jet: capitalizes on charge asymmetries in 
the OS b-jet  

๏All algorithms are based on DeepSets trained 
on simulations and calibrated in B+ ➜ J/ψ K+ 
with special precautions to reduce systematic 
effects

Particle Clouds from b-jet to B-flav
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๏CMS used this new technology 
for its measurement of φs 

๏Despite lack of any PID, best 
tagging performance at hadron 
collider ever 

๏Lack of PID is compensated by 
the information gathered from 
particles surrounding the B 
(through point-cloud approach), 
both on OS and SS 

๏As a result, very competitive 
result derived 

๏First evidence of CP 
violation in this channel

Impact on φs measurement
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๏B flavor tagging and b-jet tagging are the ultimate examples 
of how NNs are changing particle physics 

๏Two problems with clear experimental signature, that any 
physicist would try to solve from first principles 

๏Still, NNs have been a game changer in terms of performance 
and had shown that there is much more information to exploit 
than the “obvious” experimental signature 

๏Most of the (young) physicists involved think that this is a 
ten years old revolution, while instead it started 30 years 
ago, with the work of Marco and others on LEP data 

๏Most of the successes of modern applied DL, including the 
synergy between theory and experiments

Outlook
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The first paragraph
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๏Human engineered vs artificially engineered features 

๏The importance of exploiting correlations 

๏The “black block problem” and explainable AI



๏Delphes-base papers vs real-life applications 

๏Importance of working with real data from the collaborations 

๏Application-oriented development

The second and third  paragraphs
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๏A “shallow” neural network with 
15 hidden nodes 

๏Trained with backpropagation 

๏Some hyperparameter scan  

๏No GPUs back then 

๏The kind of work one would have 
done in 2016 at the LHC

Not much different than what we do today
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But something got lost with time
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