
Preamble
This talk was prepared following two of the many things
that Marco though me

1. When you have to speak at a talk or conference, you
prepare the talk during the flight

2.It is OK to cite Star Wars in a physics paper

Preamble
This talk was prepared following two of the many things
that Marco though me

1. When you have to speak at a talk or conference, you
prepare the talk during the flight

2.It is OK to cite Star Wars in a physics paper

Preamble
This talk was prepared following two of the many things
that Marco though me

1. When you have to speak at a talk or conference, you
prepare the talk during the flight

2.It is OK to cite Star Wars in a physics paper

Maurizio Pierini

B tagging with neural network:
from LEP to JEDI-net and beyond

The origins of NN for b tagging

5

๏Two different problems:

๏B flavor tagging: tell the difference between a B and
an anti-B

๏b-jet tagging: identify a jet from a b quark,
differentiating it from a jet from gluons or light
quarks

๏Traditionally approached as two different problems

B flavor tagging and b-jet tagging

6

๏B flavour is the essential tool for CP
violation studies at B physics
experiments

๏It is ultimately performed measuring
the charge of specific particles that
correlate to the B meson flavor

๏The charge of a lepton from the B
vertex

๏The charge of a kaon from the B
vertex

๏…

๏With LEP, NNs were introduced to the
task

๏BaBar & Belle inherited this

๏Similar approaches at hadron
colliders, were also same-side tag
matters

B flavor tagging

7

b-jet tagging

8

๏Tagging b-jets implies exploiting the
secondary vertex

๏b fly before decaying

๏separation between primary and
secondary vertex is unique of b vs
gluon of u,d,s jets (charm is in
the middle)

๏Several features are computed from
the primary vertex to quantify this
signature

๏Correlated, but not 1-to-1

๏Usually combined in a multivariate
analysis (likelihood ratio, neural
networks, BDT)

๏For a good B flavor tagging one
needs a particle identification
(e.g., kaon vs pion)

๏LHCb, B factories etc. used
Cherenkov detectors

๏ATLAS and CMS don’t have PID
(yet. It will come @HL-LHC with
the timing detectors)

๏For a good b-jet tagging one needs
a good secondary-vertex
resolution, which is also relevant
to measure oscillations

๏All modern detectors have a
pixel-based inner tracker

Different problems, different detector requirements

9

๏These two problems have many common points

๏Both problems are binary classifications

๏One engineers several quantities to
address each problem separately

๏A multivariate approach exploits the
correlations between these variables

๏The solutions to these problems evolved
according to the same pattern

๏NNs as a first MVA attempt

๏BDTs took over

๏NNs back with Deep Learning

๏Several architectures tried, until
solution converged to graph networks

Two problems, one solution

10

๏During Run-1, CMS used a
combined secondary vertex (a
likelihood ratio), similar to
what was used at Delphi

๏Then ML was introduced

๏NNs were used early in the
game

๏There was a BDT parenthesis

๏A Deep Neural Network

๏A Recurrent network

๏The ultimate solution: a graph
network

The evolution of b-jet tagging

11

Deep Neural Networks

12

๏In a feed-forward chain,
each node processes what
comes from the previous
layer

๏The final result (depending
on the network geometry) is
K outputs, given N inputs

yj = f (3)(Σlw(3)
jl f (2)(Σkw(2)

lk f (1)(Σiw(1)
ki xi + b(k)

k) + b(2)
l) + b(3)

j)

๏One can show that such a mechanism allows to learn generic
ℝN→ℝK functions

Recurrent Neural Networks

13

๏Recurrent architectures are
designed to process
sequences of data

๏Then idea is to have
information flowing in the
network while the sequence
is sequentially processed

๏Through this idea, recurrent
networks mimic memory
persistence

๏It takes as input directly
the “raw data” (particle
momenta) and it engineers
features by itself

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20

P
a
r
t
i
c
l

P
a
r
t
i
c
l

P
a
r
t
i
c
l

P
a
r
t
i
c
l

P
a
r
t
i
c
l

Point clouds and graph nets

14

๏Graphs Nets are architectures based on
an abstract representation of a given
dataset

๏Each example in a dataset is
represented as a set of vertices

๏Each vertex is embedded in the
graph as a vector of features

๏Vertices are connected through
links (edges)

๏Messages are passed through links
and aggregated on the vertices

๏A new representation of each node
is created, based on the
information gathered across the
graph

JEDI-net

15

๏INs process a list of
No x P inputs in pairs,
through Receiving and
Sending matrices

๏The effect of the
interaction is learned
by fR and combined with
the input to learn
(through fo) a post-
interaction
representation

๏The procedure can then
be iterated to produce
further steps i the
interactions

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…
…

… … … …
…

…
…

… … … …
…

…

…
… … … … … … … …

…

…

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R

parameterized as
neural networks

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…
…

… … … …
…

…
…

… … … …
…

…

…
… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features
Np particles

…
…

… … … …
… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�

S
fe

at
ur

es …
… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—∙ RR [Np-p × Np]

T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…
…

… … … …
…

…

…
… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…
…

… … … …
…

…
…

… … … …
…

…

…
… … … … … … … …

…

…

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R

parameterized as
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…
…

… … … …
…

…
…

… … … …
…

…

…
… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features
Np particles

…
…

… … … …
… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�

S
fe

at
ur

es …
… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—∙ RR [Np-p × Np]

T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…
…

… … … …
…

…

…
… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

16

๏ In this case, there is
no system update needed
(i.e., no cycle)

๏ It is sufficient to use
the post-interaction
representation as input
to a classifier that
returns the jet
category

๏ The three networks are
simultaneously
optimized: the learned
representation is
chosen to help the
classification

JEDI-net

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

A comparison

17

\

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

A comparison

18

\

๏Recently, CMS applied the same paradigm shift to
B-flavor tagging

๏Same side (SS): exploits the Bs fragmentation
1. SS tagger: leverages charge asymmetries in
the Bs fragmentation

๏Opposite side (OS): exploits decay products of
the other

1. b-hadron in the event

2. OS muon: leverages b ➜ μ-X decays

3. OS electron: leverages b ➜ e-X decays

4. OS jet: capitalizes on charge asymmetries in
the OS b-jet

๏All algorithms are based on DeepSets trained
on simulations and calibrated in B+ ➜ J/ψ K+
with special precautions to reduce systematic
effects

Particle Clouds from b-jet to B-flav

19

๏CMS used this new technology
for its measurement of φs

๏Despite lack of any PID, best
tagging performance at hadron
collider ever

๏Lack of PID is compensated by
the information gathered from
particles surrounding the B
(through point-cloud approach),
both on OS and SS

๏As a result, very competitive
result derived

๏First evidence of CP
violation in this channel

Impact on φs measurement

20

๏B flavor tagging and b-jet tagging are the ultimate examples
of how NNs are changing particle physics

๏Two problems with clear experimental signature, that any
physicist would try to solve from first principles

๏Still, NNs have been a game changer in terms of performance
and had shown that there is much more information to exploit
than the “obvious” experimental signature

๏Most of the (young) physicists involved think that this is a
ten years old revolution, while instead it started 30 years
ago, with the work of Marco and others on LEP data

๏Most of the successes of modern applied DL, including the
synergy between theory and experiments

Outlook

21

The first paragraph

22

๏Human engineered vs artificially engineered features

๏The importance of exploiting correlations

๏The “black block problem” and explainable AI

๏Delphes-base papers vs real-life applications

๏Importance of working with real data from the collaborations

๏Application-oriented development

The second and third paragraphs

23

๏A “shallow” neural network with
15 hidden nodes

๏Trained with backpropagation

๏Some hyperparameter scan

๏No GPUs back then

๏The kind of work one would have
done in 2016 at the LHC

Not much different than what we do today

24

But something got lost with time

25

