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B flavor tagging and b-jet tagglng

® Two different problems:

@B flavor tagging: tell the difference between a B and
an anti-B

@ b-jet tagging: 1dentify a jet from a b quark,
differentiating 1t from a jet from gluons or 1ight
quarks

@ Traditionally approached as two different problems




B flavor tasggalng

@B flavour 1s the essential tool for CP
violation studies at B physics
experiments

@It 1s ultimately performed measuring
the charge of specific particles that
correlate to the B meson flavor

® The charge of a lepton from the B
vertex

® The charge of a kaon from the B
vertex

@ ..

@eWith LEP, NNs were i1ntroduced to the
task

@® BaBar & Belle 1nherited this
2@ S1milar approaches at hadron

colliders, were also same-side tag
matters

Flavor-tag decay

Asymmetric (B? or B? ?)
energies
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D-1et taggalng

® Tagging b-jets 1mplies exploiting the
secondary vertex

@b fly before decaying displaced

' - charged
jet tracks g

lepton
® Separation between primary and

secondary vertex 1s unique of b vs C—
gluon of u,d,s jets (charm 1s 1n
the middlie)

eavy-flavour
jet

® Several features are computed from
the primary vertex to quantify this |
signature Co
jet |

@ Correlated, but not 1-to-1
@ Usually combined 1n a multivariate

analysis (likeli1hood ratio, neural
networks, BDT)
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Different problems, different detector requirements

® For a good B flavor tagging one
needs a particle 1dentification
(e.g., kaon vs pion)
- / Pionring i
@ LHCb, B factories etc. used i ' \
Cherenkov detectors ' | '

@ ATLAS and CMS don’t have PID
(yet. It will come @HL-LHC with
the timing detectors)

® For a good b-jet tagging one needs
a good secondary-vertex :
resolution, which 1s also relevant -
to measure oscillations —

@All modern detectors have a
pixel-based 1nner tracker




Two problems, one solution

® These two problems have many common points Improved Tagging at BABAR

_ - . ;_‘\ ik o 9 Tagging 4 Physics
@ Both problems are binary classifications - | Categories ~ Categories
e = Electron-
: . M — Z K Lepton
® One engineers several quantities to it S Bk
address each problem separately i [} ) [(oons | HD)
Slow Pion == -8 Kaon ~Tsoft Kaon I
T e < Kaon 1
@A multivariate approach exploits the o s Kaon 1T
correlations between these variables - Other Enclusive

7% improvement in Q = eD? (AQ = 1.9%)
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® The solutions to these problems evolved
according to the same pattern _ (s=13TeV, 25ns
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The evolution of b-jet tagglng

@ During Run-1, CMS used a

: mulation
combined secondary vertex (a :C.M.S.S’, Jaton
l1kel1hood ratio), similar to - —— CSVv1 (Likelihood ratio)
what was used at Delphi . — CSVv2 (MLP)

DeepCSV (MLP)

- — DeepJet (CNN+RNN) /] -
- —— ParticleNet (GNN) :
. —— UParT (Transformer)

@ Then ML was 1ntroduced

® NNs were used early 1n the
game

Light-jet mistag efficiency

® There was a BDT parenthesis
@A Deep Neural Network

@®A Recurrent network

® The ultimate solution: a graph

network

. b-jet tag efficiency



Deep Neural MNetworks

@ In a feed-forward chain,

ea Ch nOde p rocess eS Wha t l hidden layer 1 hidden layer 2 hidden layer 3
. input layer
comes from the previous -
7 aye I" --—;’/’ output layer

281 @ The final result (depending
on the network geometry) 1s
K outputs, given N 1nputs ﬂ

— f(3)(zle(l3) f(Z)(Z W(Z) f(l)(Z W(l)x n b}gk)) 4 bl(Z)) 4 bj(B))

| @ One can show that such a mechanism allows to learn generic
l  RVoRK functions
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Ol Recurrent Neural Networks

® Recurrent architectures are
designed to process
sequences of data

® Then 1dea 1s to have
information flowing 1n the
network while the sequence
1s sequentially processed

® Through this i1dea, recurrent
networks mimic memory

. —9 o> —> —>» ... >
persistence P S 5
Jet
: : 4 p
@ It takes as 1nput directly — =1T=1T= —

17 y) . O O O @ @)
the “raw data” (particle Sl sl 5] |5 =
momenta) and 1t engineers 5l | sl | sl | m

ol al ol ol al

features by 1i1tself \- y
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@ Polnt clouds and graph nets

® Graphs Nets are architectures based on
an abstract representation of a given
dataset
* @
® Each example in a dataset is % S
represented as a set of vertices Cff)

@

@ Each vertex 1s embedded 1n the
graph as a vector of features

® Vertices are connected through
l1nks (edges)

® Messages are passed through 11nks
and aggregated on the vertices

@®A new representation of each node
1s created, based on the
information gathered across the
graph

14



JeDI-Nnet

® INs process a list of
No x P 1nputs 1n pairs,
through Receiving and
Sending matrices

® The effect of the

interaction 1s learned
by fR and combined wit @
the 1nput to learn Q-

L Sy |
O=E )og:

(through fo) a post- @-
interaction Q-
representation O

® The procedure can then
be 1terated to produce
further steps 1 the
1nteractions

fr
No constituents | fr p
' R
A - Rp [No x Ne] l
8 .. . #
mn-n ()
D "er aaw mEm wmw
n e # IIII E [De x Nej
* Rs [No x Ngj
B 2P x Ng
C [(P+De) x Noj

RR [NE X N

AT )

fo

é" [De x Noj

fo

No: # of constituents

P: # of features

Ne = No(No-1): # of edges

De: size of internal representations

Do: size of post-interaction internal representation

¢c, fo, IR

parameterized as
neural networks
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JeDI-Nnet

No constituents | | fr

® In this case, there 1s P fr
no system update needed ) .. . _} IIII l
(i.e., no cycle) : HE-E (III I)

Eq__) . ( IIII E D:x Ng

@ It 1s sufficient to use RS[NOXNE]
the post-interaction B pxne
representation as i1nput C [(P+D9) x Noj = S
to a classifier that Q- L — | B o

returns the jet @‘_ rows O[DoxNo]
category @4_&( )4_( ) T B

® The three networks are 0-

A

simultaneously —

optimized: the learned

representation is P % of laturce oo fo, fn  EEEY
Ne = No(No-1): # of edges parameterized as 23X

chosen to nelp the neural networks 54
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[ compartison
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Particle Clouds from b-jet to B-flav

Schematic representation of a generic HLT JpsiTrkTrk event

® Recently, CMS applied the same paradigm shift to

B-flavor tagging PV
SS charge -
@ Same side (SS): exploits the Bs fragmentation u 'y —
1. SS tagger: leverages charge asymmetries 1n =Bl oae- ’ }:
the Bs fragmentation (D ------
same side
® Opposite side (0S): exploits decay products of ( ___________________________________________ opposite side
the other € i ) 92 meen
b— u X
1. b-hadron 1n the event S
2. 0S muon: leverages b =% u-X decays Particles Observable
Per—Particle Representation Event Representation
3. 0S electron: leverages b = e-X decays |  iTmmm Lwemsmes T
/ ¢ =,
4. 0S jet: capitalizes on charge asymmetries 1n \
the 0S b-jet 5 Dl TF -

@All algorithms are based on DeepSets trained

on simulations and calibrated 1n B+ = J/Y K+ / 51 é
with special precautions to reduce systematic Q ____________________________________________
e 'F'Fe Cts Energy/Particle Flow Network
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Imgact Of ) @5 measurement

Parameter Fit value Stat. uncer. Syst uncer.
® CMS used this new technology A [n[n‘ad L = 1 T
ps
for 1ts measurement of ¢@s T, [ps—] 0.6613 +00015 -+ 0.0028
Amg [hps™! ] 17.757 4+ 0.035 + 0.017
) Al 1.011 =+ 0.014 + 3.012
@® Despite lack of any PID, best Aol? 05300 +0.0016 =+ 0.0044
. Al l? 0.2409 + 0.0021 + 0.0030
tagging performance at hadron Ag? 0.0067 +0.0033 =+ 0.0009
CO 7 7 -ider' ever 5” 3145 £ 0.074 + 0.025
d, 2931 =+ 0.089 + 0.050
b | 048 +0.15 + 0.05
® Lack of PID 1s compensated by Comparison with other LHC experiments
the 1nformation gathered from =~ 011 S——
particles surrounding the B = | 68.3% CL contours
i Lo 0.10- SM no penguins B2 - J/wyK* K~ channels only
(through point-cloud approach), =
both on 0S and SS 0.09.
CMS 116.2 fb~*
- 0.08 LHCb 9 fb~!
@®@As a result, very competitive .
result derived 0.07
) ) 0.06- -
@ First evidence of CP ATLAS 99.7 fb™?
violation 1n this channel 0.05) - - - o

=20 JWKK™ [mrad]



Outlook

@B flavor tagging and b-jet tagging are the ultimate examples
of how NNs are changing particle physics

® Iwo problems with clear experimental signature, that any
physicist would try to solve from first principles

@ St111, NNs have been a game changer 1n terms of performance
and had shown that there 1s much more i1nformation to exploit
than the “obvious” experimental signature

® Most of the (young) physicists 1nvolved think that this 1s a
ten years old revolution, while 1nstead 1t started 30 years
ago, with the work of Marco and others on LEP data

@ Most of the successes of modern applied DL, 1including the
synergy between theory and experiments
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The first paragraph

This work deals with the problem of tagging the quark b in jet events in the DELPHI
experiment with neural network techniques. The b tagging problem has proved to be a
hard one, since no strategy just based on cuts on some variable characterizing the event

seems viable. It seems necessary to exploit the full multidimensional data structure and
multi-variable correlations are likely to play a major role. Neural networks have often
proved capable to successfully cope with this kind of problems. There are pros and cons
in the way they do this; the first include the possibility of using general purpose architec-
tures and algorithms to solve problems which in principle would require careful analysis
of multidimensional correlations in an “automatic” way. On the other hand this lack of
detailed insight into the the solution developed by the network is an obvious drawback
of this approach and it can be only partially overcome by an a posteriori analysis of the
network configurations and outputs.

® Human engineered vs artificially engineered features

® The 1mportance of exploiting correlations

@ The “black block prob7em”aand explainable AI




The second and third paragraphs

-v—-rrv-vwv

The problem of b-tagging has received attention in the last couple of years and some
attempts to approach it with neural networks have already produced interesting results
[1,5], even if their applicability in an actual experimental situation is not completely es-
tablished. All the works have much in common from the point of view of the chosen neural
network architectures and the learning algorithms used for training (for some interesting
alternatives see ref. [2-4]); on the other hand, they significantly differ in the set of variables
that feed into the network to give it information about the events to be classified.

In our present paper we focus on selecting input variables appropriate for this problem,
regarding particularly how to handle single particle variables. We use a feed forward
network trained with realistic input variables obtained from the DELPHI Monte Carlo
set up in such a way that a satisfactory agreement is obtained on the MC distributions
with the 1990 data set. Results on the performance of the network in terms of tagging
efficiencies and purity as well as some analysis of the underlying strategy developed by the
network are presented.

@De7phﬁe.s—.base papers vs real-11fe applications

@ Importance of working with real data from the collaborations

@Application-oriented development
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Mot much different than what we do today

- Training MC data set ) L

@A “shallow” neural network with = Bk, | oof
15 hidden nodes ¥ N TN

_Training MC data set

0 [ | o | N .
" " - 20 —:— —.;'”:'EE‘“-' h . | 0.2 :'— ..... ".‘._,,..-:7*;:1\- \
@ Trained with backpropagation R M TN
7 OM ] l()[2l - LOl‘- - '0.61 - 'O.8L 1 ? p 0.2 0.4 0.6 0.8 1
network output . output cut
A

® Some hyperparameter scan o

E Test:  MC data set
80 E
C

LY

® No GPUs back then ©E w

- _ ﬂﬁ ”ﬂ |
0 F s - \
® The kind of work one would have .: .. ol | of N
] 10 E y Wt .“.[%h[-;_!._;:: E o \ }
done 1n 2016 at the LHC o Bttt i B o Bl e
" nefwecrk output ) output cut

Figure 2 Network output for beauty (dashed line) and background (solid line) events
in the training (A) and test (C) data set on the left column; signal efficiency (solid
line), background efficiency (dashed line) and purity of b sample (dotted line) in the

training (B) and test (D) data set on the right column.
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But something got lost with time
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