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Abstract 

We present the QCD corrections to the matching conditions of the AB = 1 magnetic and 
chromo-magnetic operators in the Standard Model and in two-Higgs doublet models. We use an 
off-shell matching procedure which allows us to perform the computation using Taylor series in 
the external momenta, instead of asymptotic expansions. In the Standard Model case, we confirm 
previous results derived on-shell and we obtain BR(B ~ X,y) = (3.62-1-0.33) × 10 -4. In the case 
of the usual two-Higgs doublet model, we show that going from the leading to the next-to-leading 
order result improves the CLEO bound on the charged-Higgs mass from 260 GeV to 380 GeV. 
This limit is very sensitive to the definition of errors and we carefully discuss the theoretical 
uncertainties. Finally, in the case of the two-Higgs doublet model in which both up- and down- 
type quarks couple to the same Higgs field, the theoretical prediction for BR(B ~ X,y) can be 
reduced by at most 20% with respect to the Standard Model value. © 1998 Elsevier Science B.V. 

I.  Introduct ion  

Interest in radiative B decays has been renewed in recent years, after the first mea- 
surements of the exclusive BR(B ~ K*3~) [ l ]  and the inclusive BR(B ~ X~y) [2] 
were performed by the CLEO collaboration. Theoretically these processes are interesting 
because they are sensitive to physics beyond the Fermi scale already at the leading order 
(LO) so that they are potentially well suited to probe new physics. Moreover, these are 
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Abstract 

We compute the QCD next-to-leading order matching conditions of the (chromo)-magnetic 
operators relevant for B ---+ Xs7 in supersymmetric models with minimal flavour violation. The 
calculation is performed under the assumption that the charginos and one stop are lighter than 
all other squarks and the gluino. In the parameter region where a light charged Higgs boson 
is consistent with measurements of BR(B ---+ Xgy), we find sizeable corrections to the Wilson 
coefficients. As a consequence, there is a significant reduction of the stop-chargino mass region 
where the supersymmetric contribution has a large destructive interference with the charged-Higgs 
boson contribution. © 1998 Elsevier Science B.V. 

1. Introduction 

The inclusive decay rate for B ~ X s y  has first been measured by CLEO with the result 
BR(B  ---+ X s y )  = (2.32 ± 0.57star ± 0.35syst) x 10 -4  [1].  Recently, a preliminary new 
result based on about 30% more data has been presented by the collaboration, BR(B  --+ 
X s y )  = (2.50±0.47stat±0.39syst) x 10 -4  [2] .  The same process has also been measured 
by ALEPH at LEP, with the result BR ( B  --+ X s y  ) = (3.11-4-0.80stati0.72syst) x 10 -4  [ 3 ]. 

There has been significant theoretical effort in refining the prediction of BR(B --+ 
X~y) in the Standard Model (SM).  Calculations are now available for the next-to-leading 
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Off-shell matching…
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Figure 66: Combined average on |Vub| and |Vcb| including the LHCb measurement of |Vub|/|Vcb|,
the exclusive |Vub| measurement from B ! ⇡`⌫, and the |Vcb| average from B ! D`⌫, B !

D⇤`⌫ and Bs ! D(⇤)
s µ⌫ measurements. The dashed ellipse corresponds to a 1� two-dimensional

contour (68% of CL). The point with the error bars corresponds to the inclusive |Vcb| from the
kinetic scheme (Sec. 7.2.2), and the inclusive |Vub| from GGOU calculation (Sec. 7.4.3).

access to many observables besides the branching fraction, such as D(⇤) momentum, q2 distri-3123

butions, and measurements of the D⇤ and ⌧ polarisations (see Ref. [599] and references therein3124

for recent calculations).3125

Experiments have measured two ratios of branching fractions defined as3126

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! D`⌫`)
, (233)

R(D⇤) =
B(B ! D⇤⌧⌫⌧ )

B(B ! D⇤`⌫`)
(234)

where ` refers either to electron or µ. These ratios are independent of |Vcb| and to a large extent,3127

also of the B ! D(⇤) form factors. As a consequence, the SM predictions for these ratios are3128

quite precise:3129

• R(D) = 0.298±0.003: which is an average of the predictions from Refs. [600,601]. These3130

predictions use as input the latest results on the B ! D`⌫ form factors from BABAR and3131

Belle, and the most recent lattice calculations [502,510].3132

• R(D⇤) = 0.252±0.005: where the central value and the uncertainty are obtained from an3133

arithmetic average of the predictions from Refs. [601,602]. These calculations are in good3134
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Figure 1: The projection of the constraints of the six measured moments on themb(1 GeV)-µ2
π(1 GeV)

(left) and mb(1 GeV)-ρ3D (right) planes. The bands correspond to the total measurement accuracy
and are given by keeping all the other parameters at their central values. The ellipses represent the
1 σ contours.

the fit. It is therefore possible to test a posteriori the consistency of the meson mass expansion by

comparing the Λ̄ values obtained in the two cases. We find Λ̄(B) − Λ̄(D) = −0.086±0.092. This is

also a test of the size of the non-local terms.

In both approaches, the OPE predictions for the six moments, computed with the available

precision, have a common intersection in the multi-parameter space and the quality of the fit is

good. Within the present experimental accuracy, we therefore do not see the need to introduce

higher order terms to establish agreement with the data. In particular, the first leptonic and hadronic

moments are highly correlated and depend on nearly the same combination of heavy quark masses.

Fixing this from M1(MX), one finds M1(E") = 1.377 GeV which agrees well with the measured

value of (1.383±0.015) GeV. This provides a non-trivial consistency check of the OPE. The overall

agreement represents both a test of the theory and suggests constraints on the size of the 1/m4
b terms

and of other missing corrections. Similarly, the observed agreement strongly supports the validity of

quark-hadron duality in the B decay shape variables.

At present the achieved experimental resolution matches the available theoretical accuracy. With

more precise data soon becoming available, it is important to improve the latter, particularly for

higher hadronic moments. One way to improve the convergence of the heavy quark expansion could

be to employ different kinematic variables. We propose to consider N 2
X = M2

X − 2Λ̃EX , where

MX and EX are the hadronic mass and energy and Λ̃ a fixed mass parameter. Choosing Λ̃ near

7

Table 5: Results of fit for the mb(µ), mc(µ) and µ2
π(µ) formalism.

Fit Fit Fit Syst.
Parameter Values Uncertainty Uncertainty
mb(1 GeV) 4.59 ± 0.08 ± 0.01 GeV
mc(1 GeV) 1.13 ± 0.13 ± 0.03 GeV
µ2
π(1 GeV) 0.31 ± 0.07 ± 0.02 GeV2

ρ3D 0.05 ± 0.04 ± 0.01 GeV3

Table 6: Results of fit for the Λ̄-λ1 formalism.

Fit Fit Fit Syst.
Parameter Values Uncertainty Uncertainty
Λ̄ 0.40 ± 0.10 ± 0.02 GeV
λ1 -0.15 ± 0.07 ± 0.03 GeV2

λ2 0.12 ± 0.01 ± 0.01 GeV2

ρ1 -0.01 ± 0.03 ± 0.03 GeV3

ρ2 0.03 ± 0.03 ± 0.01 GeV3

uncertainty on αs and evaluate the effect of removing the BLM corrections from the lepton moments.

In this scheme that is a small effect and higher order perturbative corrections are expected to be under

control. Dimensional estimates suggest that 1/m4
b effects do not exceed the present experimental

resolution. Other systematic uncertainties will be addressed in a dedicated publication.

For the Λ̄-λ1 formalism we take the effect of Ti = (0.0±0.50)3 GeV3, αs = 0.22±0.01 and we also

estimate the effect of the missing corrections to third moments as M6
B(0.001±0.0005) β0 (αs/π)2 and

M6
B(0.003± 0.003) Λ̄/M̄B αs/π.

The fit was also repeated using only the first two moments, leaving free mb(1 GeV), µ2
π(1 GeV)

and Λ̄, λ1, respectively. The other parameters were fixed to the central values obtained in the full fit.

Results agreed with those from the full fit. In particular, the values of Λ̄ = 0.42±0.07(stat.) GeV and

λ1 = (−0.17±0.05(stat.)) GeV2 agree with the recent result reported by the Cleo Collaboration [1],

which uses the first moments of the charged lepton energy to obtain Λ̄ = 0.39 ± 0.07 GeV and

λ1 = (−0.25± 0.05) GeV2.

There are several facets of these results to be looked at. One interesting piece of information

comes from the correlation between mc and mb extracted from the fit. It corresponds tomc(1 GeV) =

1.63× (mb(1 GeV)− 3.91). Therefore a competitive value of the charm mass can be extracted from

a precise determination of mb. Using, for instance, mb(1 GeV) = (4.60 ± 0.05) GeV would give

mc(1 GeV) = (1.13 ± 0.09) GeV. This can be compared to the present typical lattice uncertainties

which range between 50 and 120 MeV [20].

In the running mass scheme, the expansions of Eq.(5), for the B and D mesons are not used in
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Abstract

We extract the heavy quark masses and non-perturbative parameters from the Delphi prelim-

inary measurements of the first three moments of the charged lepton energy and hadronic mass

distributions in semileptonic B decays, using a multi-parameter fit. We adopt two formalisms, one

of which does not rely on a 1/mc expansion and makes use of running quark masses. The data

are consistent and the level of accuracy of the experimental inputs largely determines the present

sensitivity. The results allow to improve on the uncertainty in the extraction of |Vcb|.

CERN–TH/2002-290

23 October 2002

OPE for inclusive B decays set-up in 1990s
 Chay,Georgi,Grinstein, Bigi,Shifman, Uraltsev, Vainshtein…

Here first analysis without an expansion in  1/mc

The inclusive s.l. decay width has been calculated through second order in perturbative QCD.

Second order BLM corrections were obtained in [23], all-order BLM terms are available from [24],

whereas second-order non-BLM corrections have been estimated in [25]. Non-perturbative corrections

start at order O(1/m2
b) [11] and O(1/m3

b) corrections have also been calculated [7]. Electroweak

corrections have also been taken into account [26].
The determination of |Vcb| and the contributions of the various parameters in the kinetic mass

scheme is described in [27]. An approximate formula which displays the dependence on the different
parameters is:

|Vcb| = |Vcb|0
[

1− 0.65
(

mb(1) − 4.6 GeV/c2
)

+ 0.40
(

mc(1)− 1.15 GeV/c2
)

+0.01
(

µ2
π − 0.4 GeV2

)

+ 0.10
(

ρ3D − 0.12 GeV3
)

+0.06
(

µ2
G − 0.35 GeV2

)

− 0.01
(

ρ3LS + 0.17 GeV3
)]

. (9)

A detailed discussion of the theoretical uncertainties on |Vcb| goes beyond the scope of this pa-

per. Here we focus on the uncertainty arising from the heavy quark masses and non-perturbative

parameters determined in the fit. It is evaluated using the full fit error matrix which leads to ±1.5%.

There is an additional uncertainty coming from the limited accuracy of the theoretical expressions

which have been used. We take the range mb/2 < µ′ < mb for the scale µ′ at which αs is evaluated

and find a ±1% effect2. In summary, we obtain:

|Vcb| = 0.0419×
(

1± 0.016|meas ± 0.015|fit ± 0.010|pert
)

, (10)

where the first uncertainty reflects the accuracy on the s.l. width determination.

The expression for the inclusive b s.l. width in the pole mass scheme is known to the same order.

The fit results have been used to obtain:

|Vcb| = 0.0413×
(

1± 0.016|meas ± 0.017|fit ± 0.006|nl ± 0.021|pert
)

. (11)

Again, the first two uncertainties correspond to the decay width measurement and to the fitted

parameters, respectively. The third uncertainty refers to the Ti=1,4 parameters which have been

varied within the range (0± (0.5)3) GeV3. The uncertainty from the truncation of the perturbative

QCD series is again estimated by varying the scale at which αs is evaluated between mb/2 and 2mb.

Here the perturbative uncertainty is larger and reflects the slower convergence of the perturbative

series when the pole mass scheme is employed.

4 Conclusions

The values of the heavy quark masses have been determined, together with the leading 1/m2
b and

1/m3
b parameters, from a fit to the first three moments of the charged lepton energy and hadronic

2Incorporating the third-order BLM correction suppresses this scale dependence. Combining Refs. [24] and [28],
we find the third-order BLM correction to Γsl(b→ c) to be ≈ −50(αs/π)3 in this scheme. This increases |Vcb| by 1%
for µ′=mb, and leaves it nearly unchanged, compared to two loops, for µ′=mb/2.

9
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INCLUSIVE SEMILEPTONIC B DECAYS

  Inclusive observables are double series in 𝛬/mb and αs

Mi =M (0)
i +

↵s

⇡
M (1)

i +
⇣↵s

⇡

⌘2
M (2)

i +
⇣
M (⇡,0)

i +
↵s

⇡
M (⇡,1)

i

⌘ µ2
⇡

m2
b

+
⇣
M (G,0)

i +
↵s

⇡
M (G,1)

i

⌘ µ2
G

m2
b

+M (D,0)
i

⇢3D
m3

b

+M (LS,0)
i

⇢3LS

m3
b

+ ...

Global shape parameters (first moments of the distributions, with various lower 
cuts on El) tell us about mb, mc and the B structure, total rate about |Vcb|

 
OPE parameters describe universal properties of the B meson and of the quarks: 
they are useful in many applications (rare decays, Vub,...) 

Reliability of the method depends on our control of higher order effects.  
Quark-hadron duality violation would manifest itself as inconsistency in the fit.
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FIG. 1: Comparison of fit predictions and the hadron moment measurements: (a) 〈MX〉, (b) 〈M2
X〉, (c) 〈M3

X〉, (d) 〈(M2
X −

〈M2
X〉)2〉 and (e) 〈(M2

X−〈M2
X 〉)3〉. The yellow bands represent the total experimental and theoretical fit uncertainty as obtained

by converting the fit errors of each individual HQE parameter into an error for the individual moment. The green band indicates
the experimental uncertainty only. Solid markers are included in the fit while open markers are only overlaid for comparison.
Moment measurements at different Ecut are highly correlated.

In addition to the above we extract the difference in
the quark masses as

mb −mc = 3.446± 0.025GeV .

Comparing the extracted values of the quark masses
mb and mc with other determinations is often convenient
in the commonly used MS scheme. The translation be-
tween the kinetic and MS masses to two loop accuracy
and including the BLM part of the α3

s corrections was
given in Ref. [3]. This leads to

mb(mb) = 4.20± 0.04 GeV

mc(mc) = 1.24± 0.07 GeV

These results agree well with the determination in the
1S scheme [8, 32] and recent unquenched lattice calcula-
tions [33, 34, 35]. However, it has been accepted among

theorists that the normalization scale of around 1.2 GeV
in the MS scheme may be too low for a precision evalua-
tion of masses, and higher-order perturbative corrections
in mc(mc) are too significant. As a result, an additional
uncertainty in mc(mc) of at least 50 MeV may have to
be added associated with the definition of mc(mc) itself.
A larger normalization scale for the MS masses is gener-
ally used. To address this we give here the value of mc

normalized at a safer momentum scale 2.5 GeV as was
advocated recently:

mc(2.5GeV) = 1.072± 0.06 GeV .

The theoretical uncertainty in this translation is small.
It may also be convenient to have the ratio of the charm
and the beauty quark masses in the MS scheme which is

9

TABLE II: Results for the combined fit to all moments with experimental and theoretical uncertainties. For |Vcb| we add
an additional theoretical error stemming from the uncertainty in the expansion for ΓSL of 1.4%. Below the fit results the
correlation matrix is shown.

Combined OPE FIT RESULT: χ2/Ndof =19.3/44

Fit |Vcb| ×10−3 mb (GeV) mc (GeV) µ2
π (GeV2) ρ3D (GeV3) µ2

G (GeV2) ρ3LS (GeV3) BRc"ν̄ (%)
RESULT 41.96 4.590 1.142 0.401 0.174 0.297 -0.183 10.71
∆ exp 0.23 0.025 0.037 0.019 0.009 0.024 0.054 0.10
∆ HQE 0.35 0.030 0.045 0.035 0.022 0.046 0.071 0.08
∆ ΓSL 0.59
|Vcb| 1.000 -0.399 -0.220 0.405 0.267 -0.305 0.056 0.700
mb 1.000 0.951 -0.387 -0.189 0.074 -0.223 0.098
mc 1.000 -0.408 -0.246 -0.329 -0.124 0.143
µ2
π 1.000 0.685 0.257 -0.008 0.122

ρ3D 1.000 -0.050 -0.479 -0.055
µ2
G 1.000 -0.035 0.046

ρ3LS 1.000 -0.052
BRc"ν̄ 1.000

FIG. 4: Comparison of the different fit scenarios. Figure (a) shows the ∆χ2 = 1 contour in the (mb,µ
2
π) plane for the combined

fit to all moments (solid red), the fit to hadron and lepton moments only (dashed blue) and the fit to photon moments only
(dotted green). Figure (b) shows the results for the combined fit (solid red) and the fit to hadron and lepton moments only
(dashed blue) in the (mb,|Vcb|) plane.
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Combined  fitB → Xcℓν, B → Xsγ

1.7% uncertainty
on Vcb

unknown O(αsΛ /mb)



HEAVY QUARK MASSES AND THEORETICAL 
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employed.

can be expressed as double expansions in ↵s and inverse powers of mb, schematically

Mi = M
(0)
i

+
↵s(µ)

⇡
M

(1)
i

+
⇣
↵s

⇡

⌘2
M

(2)
i

+

✓
M

(⇡,0)
i

+
↵s(µ)
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M

(⇡,1)
i

◆
µ
2
⇡
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b

+
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M

(G,0)
i

+
↵s(µ)

⇡
M

(G,1)
i

◆
µ
2
G

m2
b

+M
(D)
i

⇢
3
D

m3
b

+M
(LS)
i

⇢
3
LS

m3
b

+ . . . (10)

where all the coe�cients M (j)
i

depend on mc, mb, Ecut, and on various renormaliza-
tion scales. The dots represent missing terms of O(↵3

s
), O(↵2

s
/m

2
b
), O(↵s/m

3
b
), and

O(1/m4
b
), which are either unknown or not yet included in the latest analysis [12].

It is worth stressing that according to the adopted definition the OPE parameters
µ
2
⇡
, ... are matrix elements of local operators evaluated in the physical B meson,

i.e. without taking the infinite mass limit.
The semileptonic moments are sensitive to a specific linear combination of mc

and mb, ⇡ mb � 0.8mc [57], see Fig. 3, which is close to the one needed for the
extraction of |Vcb |, but they cannot resolve the individual masses with good accu-
racy. It is important to check the consistency of the constraints on mc and mb from
semileptonic moments with precise determinations of these quark masses, as a step
in the e↵ort to improve our theoretical description of inclusive semileptonic decays.
Moreover, the inclusion of these constraints in the semileptonic fits improves the
accuracy of the |Vub | and |Vcb | determinations. The heavy quark masses and the
non-perturbative parameters obtained from the fits are also relevant for a precise
calculation of other inclusive decay rates such as that of B ! Xs� [58].

In the past, the first two moments of the photon energy in B ! Xs� have gen-

C. Schwanda, PG 2013
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Since the relation between the kinetic and the MS masses is known only to O(↵2
s
),

the ensuing uncertainty is not negligible. It has been estimated to be about 30
MeV [38],

m
kin

b
(1GeV)�mb(mb) = 0.37± 0.03GeV,

leading to a preferred value

mb(mb) = 4.183± 0.037GeV,

in good agreement with various recent mb determinations [60, 68, 76–81], as illus-
trated in Fig.5. Of course, one can also include in the fit both mc and mb determi-
nations, but because of the scheme translation error in mb the gain in accuracy is
limited [12, 58].

|Vcb | = (42.42 ± 0.86) 10−3
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PERTURBATIVE CORRECTIONS



RESIDUAL UNCERTAINTY on Γsl
3

FIG. 1. Scale dependence of �sl at fixed values of the inputs and µkin = 1GeV. Dashed (solid) lines represent the two (three)
loop calculation. In the left plot (µb-dependence) the blue (red) curves are at µc = 3(2)GeV; in the right plot (µc-dependence)
the blue(red) curves µb = mkin

b (mkin
b /2).

uncertainty of 0.6% in �sl and consequently of 0.3% in |Vcb| for our new default scenario, corresponding to µ = 1GeV,
µc = 2GeV and µb = mkin

b /2 ' 2.3GeV.

Beside the purely perturbative contributions, there are various other sources of uncertainty in the calculation of the
semileptonic width [25], but the work done in the last few years has been fruitful. After the O(↵s/m2

b) corrections
[26, 27], the O(↵s⇢3D/m3

b) corrections to �sl have been recently computed in Ref. [20] (the O(↵s⇢3LS) corrections to �sl

follow from the O(↵sµ2
G/m

2
b) and are tiny). They are expressed in terms of mb in the on-shell scheme and of mc(mb).

After converting their result to the kinetic scheme and changing the scale of mc, we find that this new correction,
together with all the terms of the same order generated by the change of scheme, enhances the coe�cient of ⇢3D by
8 to 18%, depending on the various scales. However, the O(↵s⇢3D) terms, after the conversion to the kinetic scheme,
generate new O(µ3↵2

s) and O(µ3↵3
s) contributions that tend to compensate their e↵ect. The resulting final shift on

|Vcb| is +0.05% with µc = 3GeV, µb = mkin
b and +0.1% for µc = 2GeV, µb = mkin

b /2, and we choose to neglect it in
the following.

After the O(↵s⇢3D) contribution, the main residual uncertainty in �sl is related to higher power corrections. The
Wilson coe�cients of the O(1/m4

b , 1/m
5) contributions have been computed [28], but little is known about the

corresponding 27 matrix elements. The Lowest Lying State Approximation (LLSA) [28] has been employed to estimate
them and to guide the extension [5] of Ref. [4] to O(1/m4

b , 1/m
5). In the LLSA, the O(1/m4

b , 1/m
5) contributions

increase the width by about 1%, but there is an important interplay with the semileptonic fit: as shown in Ref. [5], the
O(1/m4

b , 1/m
5) corrections to the moments and their uncertainties modify the results of the fit in a subtle way and the

final change in �sl is about +0.5%, a result stable under changes of the LLSA assumptions [5]. We therefore expect
the O(1/m4

b , 1/m
5) corrections to decrease |Vcb| by 0.25% with respect to the default fit. Although the uncertainty

attached to this value is mostly included in the theoretical uncertainty of the 2014 fit results, we may consider an
additional 0.2%. Further uncertainties stem from unknown O(↵s⇢3LS/m

3
b), O(↵2

s/m
2
b), and O(↵2

s⇢
3
D/m3

b) corrections,
but they are all likely to be at or below the 0.1% level, and of course quark-hadron duality has to break down at some
point. Combining all the discussed sources of uncertainties in a conservative way, we estimate the total remaining
uncertainty in �sl to be 1.2%.

In the end, using the inputs of the 2014 default fit and setting µc = 2GeV, µb = mkin
b /2 for the central value, we

obtain

|Vcb|2014 = 42.48(44)th(33)exp(25)� 10
�3 = 42.48(60) 10�3 (6)

where the uncertainty due to �sl has been reduced by a factor 2 with respect to Ref. [4].

UPDATING THE SEMILEPTONIC FIT

Despite ongoing analyses of the q2 and MX -moments at Belle and Belle II [29, 30], no new experimental result on
the semileptonic moments has been published since the 2014 fit [4]. On the other hand, new lattice determinations

Similar reduction in  dependence. Purely perturbative uncertainty 
(max spread), central values at . 

 effects in the width are known. Additional uncertainty from 
higher power corrections, soft charm effects of , duality violation. 

Conservatively: 1.2% overall theory uncertainty in   

Interplay with fit to semileptonic moments, known only to  

μkin ±0.7 %
μc = 2GeV, μαs

= mb/2

O(αs/m2
b , αs/m3

b)
O(αs/m3

bmc)

Γsl

O(α2
s , αsΛ2/m2

b)

Bordone, Capdevila, PG, 2107.00604

2loop
3loop

μc = 2GeV

μc = 3GeV

μαs
= mb /2

2loop
3loop

μαs
= mb



  CORRECTIONS TO  MOMENTSO(α2
s β0) q2
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Figure 2: Comparison of the first three central moments in the kinetic scheme between theoretical
prediction and experimental data from Belle [18] (red dots) and Belle II [19] (red squares). The
various curves represent calculations including all terms at leading power in mb (LP), up to O(1/m2

b)
(NLP), up to O(1/m3

b) (NNLP), and up to O(↵0
s,↵

1
s,↵

2
s�0) (LO, NLO, BLM).

Figure 3: Results for the first three central moments including the theory uncertainty bands
(green) and the parametric uncertainty from the fit [12] results (blue). The combined errors are
not shown.

values of Q3 prefer ⇢
3

D ⇡ 0.12 GeV3 and 0.19 GeV3, respectively, with an experimental
uncertainty of around 0.03 GeV3. Different values of q2cut lead to roughly similar results,
with lower values of ⇢

3

D preferred (with larger experimental uncertainty) at lower q
2
cut.

Similarly, for q
2
cut = 6 GeV2, the Belle and Belle II central values of Q2 prefer ⇢

3

D ⇡ 0.11

GeV3 and 0.16 GeV3, respectively, with an experimental uncertainty between 0.020 and
0.025 GeV3. In summary, even considering the theory uncertainty of our predictions, the
Belle data for Q2,3 appear in tension with the results of the fit of [12], but they are also in
tension with the Belle II results: for instance Q3 measured at q

2
cut = 6 GeV2 by Belle and

Belle II is 0.18(35) GeV6 and 1.16(38) GeV6, respectively (a ⇠ 2� tension). It is also worth
mentioning that even the low range of ⇢3D favoured by the Belle q

2-moments data is quite
far from the results of the fit without higher power corrections in [20].

The above considerations on Q2,3 depend significantly on the inclusion of the BLM
corrections in our predictions. Indeed, we see in Fig. 2 that they shift Q2,3 up by an amount

– 11 –

sizeable for 2nd and 3rd moments 
Belle and Belle II moments differ by  ∼ 2σ

Finauri, PG 2310.20324

New  calculation   Fael and Herren 2403.03976O(α2
s )



QED CORRECTIONS
b c b

`

⌫̄`

(a) (b) (c)

(d) (e) (f)

Figure 1: Sample Feynman diagrams which contribute to the forward scattering ampli-
tude of a bottom quark at LO (a), NLO (b), NNLO (c) and N3LO (d-f). Straight, curly
and dashed lines represent quarks, gluons and leptons, respectively. The weak interaction
mediated by the W boson is shown as a black dot.

(for sample Feynman diagrams see Fig. 1). Moments without cuts are simply obtained
by multiplying the forward scattering amplitude by the weight function (q2)i(q · v)j or
(p` · v)i for the Qi,j and Li, respectively. The leading order prediction is obtained from
the two-loop diagram in Fig. 1(a) where the internal lines correspond to the neutrino,
the charged lepton and the charm quark. The weak interaction is shown as an e↵ective
vertex. To compute QCD corrections up to O(↵3

s) we have to add up to three more loops
(see Fig. 1(b) to (f)).

An exact computation of five-loop diagrams with two mass scales (mb and mc) is out
of range using current methods. We obtain finite charm mass e↵ects by performing
an asymptotic expansion in the parameter � = 1 � mc/mb ⌧ 1, i.e. we expand the
Feynman diagrams around the equal mass limit mc ' mb, which we realize with the
method of regions [22, 23]. We call this approach the �-expansion. The opposite limit
⇢ = mc/mb ⌧ 1 (the ⇢-expansion) was adopted in [7] for the evaluation of the width to
O(↵2

s).

It has been shown that the �-expansion converges quite fast for the physical values of quark
masses � ' 0.7 [16, 19, 24]. Moreover compared to an expansion around the opposite limit
(⇢ ' 0.3), the �-expansion o↵ers two crucial advantages:

1. The number of regions to be calculated is considerably smaller.

2. The �-expansion yields a factorization of the multi-loop integrals which allows us
to integrate at least two loop momenta without applying integration-by-part (IBP)
relations. A computation up to O(↵n

s ) becomes a n-loop problem, even if we start
with (n+ 2)-loop Feynman diagrams.
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In the presence of photons, OPE valid only for total 
width and moments that do not resolve lepton 
properties ( ).  Expect mass singularities and 

 corrections.  

Leading logs  can be easily computed for 
simple observables using structure function 
approach, for ex the lepton energy spectrum

                                            

Eℓ, q2

O(αΛ/mb)

α ln me/mb

( dΓ
dy )

(1)

=
α
2π

ln
m2

b

m2
ℓ ∫

1

y

dx
x

P(0)
ℓℓ ( y

x ) ( dΓ
dx )

(0)

P(0)
ℓℓ (z) = [ 1 + z2

1 − z ]
+

0.0 0.2 0.4 0.6 0.8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

y

f(
y)

Electron energy spectrum

Bigi, Bordone, Haisch, Piccione PG
2309.02849



Leading contributions
1. Collinear logs: captured by splitting functions

⇠ ↵e

⇡
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2. Threshold effects or Coulomb terms
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3. Wilson Coefficient
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also at subleading power!



COMPLETE  EFFECTS IN LEPTONIC SPECTRUMO(α)

We assume the true  determined by the B-factory experiments corresponds to the energy 
before the electron enters the detector, and after all final-state radiation associated to the hard 
process has taken place. 

Small but non-negligible differences with PHOTOS in BaBar leptonic moments 

Ee

Ecut �BRBaBar

incl
�BRLL

incl
�BRNLL

incl
�BR↵

incl
�BR

1/m2
b

incl
�BRincl �

0.6 �1.26% �1.92% �1.95% �0.54% �0.50% �0.45% +0.34

0.8 �1.87% �2.88% �2.91% �1.36% �1.29% �1.22% +0.30

1.0 �2.66% �4.03% �4.04% �2.38% �2.26% �2.15% +0.25

1.2 �3.56% �5.43% �5.41% �3.65% �3.43% �3.27% +0.14

1.5 �5.22% �8.41% �8.26% �6.37% �5.73% �5.39% �0.09

Table 2. Relative size of the QED corrections to BRincl(Ecut). The values of Ecut are given in
units of GeV. The entries in the column �BRBaBar

incl are the corrections obtained by BaBar in [44],
while the numbers for �BRLL

incl, �BR
NLL
incl and �BR↵

incl successively include the LL, NLL and complete
O(↵) corrections to the b ! ce⌫ branching ratio. The �BR

1/m2
b

incl numbers include all partonic QED
effects as well as the LL QED corrections to the O(⇤2

QCD/m
2
b) power corrections. The entries in

the column �BRincl represent our best predictions and include besides all partonic QED effects
the power-suppressed LL QED corrections up to O(⇤3

QCD/m
3
b)

�
see (5.2)

�
. The relative shifts in

standard deviations (�) that we obtain when using our best QED calculation to correct the BaBar
measurements are given in the last column. See main text for additional details.

reduction would be larger by around 0.4% if the constant �11/6 had been included in AEW

and not in f(y)
�
cf. (5.1) and (5.2)

�
. As a result when using our best QED calculation to

correct the BaBar measurements we obtain BRincl(Ecut) values that are on average larger
by about 0.2� than the QED corrected values for BRincl(Ecut) given in [44].

The absolute shift of the QED corrections to `1(Ecut), `2(Ecut) and `3(Ecut) is shown
in the three panels in Figure 7. In order to not spoil the strong cancellations between
the quantum corrections to the numerator and the denominator that enter the normalised
central moments [7, 47] we perform a double-series expansion in ↵ and ⇤QCD/mb when cal-
culating the ratios (4.23). In this expansion we keep all the terms up to the order indicated
by the superscript following the notation introduced in (5.2). We add that we have verified
that the expanded and unexpanded results of the central moments are numerically quite
close together. The black curves correspond to the QED corrections estimated by BaBar
in [44] with the help of PHOTOS, while the red (green) lines represent our LL

�
full O(↵)

�

predictions. The grey bands represent the systematic uncertainties that are associated to
the experimental subtraction procedure of QED corrections performed in [44], while the
black error bars correspond to the total uncertainties of the BaBar measurements. From all
three plots it is evident that the LL QED corrections describe the BaBar corrections pretty
well and that the numerical impact of the non-LL O(↵) corrections is notably smaller in
the case of `1(Ecut), `2(Ecut) and `3(Ecut) than for BRincl(Ecut). Still the inclusion of the
term ↵/⇡

�
�f

(1)(y)� 11/6
�

in the calculation of the central moments in general improves
the agreement between the BaBar and our QED corrections. Also notice that in the case
of `2(Ecut) the differences between the BaBar numbers and our best QED predictions are
within the systematic uncertainty band of the PHOTOS bremsstrahlungs corrections, while
this is not the case for `1(Ecut) and `3(Ecut). Given that the systematic uncertainties as-
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~0.2% reduction in Vcb
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Figure 7. Comparison of the absolute shift of the QED corrections to `1(Ecut), `2(Ecut)
and `3(Ecut) as a function of the lower cut Ecut on the electron energy. The colour coding re-
sembles that used in Figure 6.

sociated to the subtraction of QED effects are always a subdominant component in the
total experimental uncertainties, our absolute shifts �`1(Ecut), �`2(Ecut) and �`3(Ecut)

are, however, always fully compatible with the combined errors quoted by BaBar.

– 22 –

The black curve corresponds to the correction obtained by BaBar 
using PHOTOS, while the red (green) curve corresponds to our QED 
prediction including the LL terms (all QED corrections). The grey 
band represents the systematic uncertainty on the PHOTOS 
bremsstrahlungs corrections that BaBar quotes, while the black error 
bars correspond to the total uncertainties of the QED corrected BaBar 
results. 



A GLOBAL FIT
Finauri, PG 2310.20324

m
kin

b mc(2GeV) µ
2
⇡ µ

2

G(mb) ⇢
3

D(mb) ⇢
3

LS BRc`⌫ 103|Vcb|
4.573 1.090 0.454 0.288 0.176 �0.113 10.63 41.97
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4: Results of the updated fit in our default scenario (µc = 2 GeV, µs = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1
GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�
2
min = 40.4 and �

2
min/dof = 0.546.

data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q
2-moments in the global fit confirms the above picture. The q

2-
moments lower slightly the value of ⇢3D(mb) by half a � and that of |Vcb| by a fraction of a �,
decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51⇥10�3 to
0.48 ⇥10�3, respectively. Because of its correlation with ⇢

3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [38]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.23%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.97± 0.27exp ± 0.31th ± 0.25�)⇥ 10�3 = (41.97± 0.48)⇥ 10�3
. (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D

⇤
`⌫ [41–47], but agrees well with the very recent Belle and Belle

II results [48, 49] and with analyses of B ! D`⌫ [50, 51]. Interestingly, we also find that
a global fit to moments measured at a single cut on E` and q

2, which minimally depends
on the correlations among theory errors, gives very similar results. This corroborates our
study of the dependence on the modelling of theory correlations.

Further improvements of the inclusive determination of |Vcb| may come from new and
more precise measurements of the leptonic and hadronic moments at Belle II, which could
also measure the Forward-Backward asymmetry and related observables for the first time,
bringing a new sensitivity to µ

2

G to the fits [52, 53]. The new measurements should be able
to improve the treatment of QED corrections using the results of [38]. It will be useful
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Includes all leptonic, hadronic, and  moments

Up to  for  moments
Up to  for  moments
Subtracts QED effects beyond those computed by PHOTOS (only BaBar
BR and lept moments) 

Employs  and  (FLAG)

q2

O(α2
s ), O(αs/m2

b), O(1/m3
b) MX, Eℓ

O(α2
s β0), O(αs/m3

b) q2

δ |Vcb | ∼ − 0.2 %

mb(mb) = 4.203(11)GeV mc(3GeV) = 0.989(10)GeV
χ2

min/dof = 0.55

m
kin

b mc(2GeV) µ
2
⇡ µ

2

G(mb) ⇢
3

D(mb) ⇢
3

LS BRc`⌫ 103|Vcb|
4.573 1.090 0.454 0.288 0.176 �0.113 10.63 41.97
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4: Results of the updated fit in our default scenario (µc = 2 GeV, µs = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1
GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�
2
min = 40.4 and �

2
min/dof = 0.546.

data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q
2-moments in the global fit confirms the above picture. The q

2-
moments lower slightly the value of ⇢3D(mb) by half a � and that of |Vcb| by a fraction of a �,
decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51⇥10�3 to
0.48 ⇥10�3, respectively. Because of its correlation with ⇢

3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [38]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.23%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.97± 0.27exp ± 0.31th ± 0.25�)⇥ 10�3 = (41.97± 0.48)⇥ 10�3
. (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D

⇤
`⌫ [41–47], but agrees well with the very recent Belle and Belle

II results [48, 49] and with analyses of B ! D`⌫ [50, 51]. Interestingly, we also find that
a global fit to moments measured at a single cut on E` and q

2, which minimally depends
on the correlations among theory errors, gives very similar results. This corroborates our
study of the dependence on the modelling of theory correlations.

Further improvements of the inclusive determination of |Vcb| may come from new and
more precise measurements of the leptonic and hadronic moments at Belle II, which could
also measure the Forward-Backward asymmetry and related observables for the first time,
bringing a new sensitivity to µ

2

G to the fits [52, 53]. The new measurements should be able
to improve the treatment of QED corrections using the results of [38]. It will be useful
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Figure 7: Regions of ��
2  1 in the 2D planes (µ2

⇡, ⇢
3
D) (left) and (⇢3D, |Vcb|) (right). The dots

stand for the points at ��
2 = 0.

our ⇠ 15% uncertainty falls short of an O(↵3
s) contribution exceeding 25%. We therefore

increase the theoretical uncertainty of the third hadronic moments for the values of Ecut

where it is lower than 30%. This affects mostly the third hadronic moment measured by
Delphi [4], which has an experimental uncertainty of about 20% and favours a low ⇢

3

D, and
results in an increase of ⇠ 0.008 GeV3 of the central value of ⇢3D in the fit.

Our final results are summarised in Table 4, where we present a global fit to hadronic,
leptonic and q

2-moments that employs the updated heavy quark masses, an enlarged theory
uncertainty for the third hadronic moment, and includes, for the BaBar measurements, the
QED effects computed in [38]. The changes with respect to the global fit (last row) of
Table 3 are minor and mostly concern the determination of the branching fraction and a
�0.1% shift of |Vcb|. In Fig. 7 we show the regions of ��

2
< 1 in the 2D planes (µ2

⇡, ⇢
3

D)

and (⇢3D, |Vcb|), for the sets of data B-F of Fig. 6 after the various updates discussed in this
section.

4 Summary and outlook

The recent measurements of the q
2-moments by Belle and Belle II [18, 19] has opened

new opportunities for the study of inclusive semileptonic B decays. In this paper we have
presented the results of a new calculation of the moments of the q

2 spectrum in inclusive
semileptonic B decays that includes contributions up to O(↵2

s�0) and O(↵s⇤3

QCD
/m

3

b). In
particular, we have reproduced many of the results presented in Refs. [15, 30] and computed
for the first time the BLM corrections O(↵2

s�0) to the q
2-moments. If we employ the results

of the default fit of [12] as inputs, our predictions for the central moments of the q2 spectrum
are in excellent agreement with Belle II data [19], while there is a mild tension with Belle
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comparison of different datasets

 momentsq2

Finauri, PG 2310.20324

Theory correlations are no longer an issue



MINOR TENSIONS IN HIGHER  MOMENTSq2

m
kin

b mc µ
2
⇡ µ

2

G ⇢
3

D ⇢
3

LS 102BRc`⌫ 103|Vcb| �
2
min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q
2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3: Global fit results with and without the q
2 moments from Belle/Belle II for µs = mb/2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].
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Figure 4: Results for the central moments including the theory uncertainty bands (green) and
the parametric uncertainty from the results of the fit performed in this paper (blue). The combined
errors are not shown.

II data is presented in Fig. 4. We observe a clear reduction of the parametric uncertainty,
mostly due to the improved determination of ⇢3D.

We have performed a number of other fits, changing the scales and selecting different
subsets of data. In particular, we study the dependence on the model of theoretical corre-
lations by varying �q in between 0.7 and 3 GeV2. The results of the global fits including
both Belle and Belle II data are shown in Fig. 5: they depend very little on the choice for
�q. As can be seen from (3.1) the value of q̄2 controls the region in q

2
cut where the cor-

relation between adjacent measurements starts to decrease because of fast growing higher
order effects. Values of q̄2 lower than 9 GeV2 would lead to ⇠(q2cut) similar to those obtained
with large �q, while values of q̄2 higher than 9GeV2 appear unjustified.

The results of fits with various subsets of data are shown in Fig. 6. The fits with only
hadronic moments and only q

2-moments also include the measurements of the branching
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HIGHER POWER CORRECTIONS
Proliferation of non-pert parameters  starting 1/m4: 9 at dim 7, 18 at dim 8

Lowest Lying State Saturation 
Approx (LLSA) truncating    

Mannel,Turczyk,Uraltsev
 1009.4622

�B|O1O2|B⇥ =
X

n

�B|O1|n⇥�n|O2|B⇥
see also Heinonen,Mannel 1407.4384

and relating higher dimensional to lower dimensional matrix elements, e.g.

𝝐 excitation energy to P-wave states. LLSA might set the scale of effect, but large 
corrections to LLSA have been found in some cases 1206.2296 

⇢3D = ✏µ2
⇡ ⇢3LS = �✏µ2

G ✏ ⇠ 0.4GeV

In principle relevant: HQE contains O(1/mn
b1/mk

c )

We use LLSA as loose constraint or priors (60% gaussian uncertainty, dimensional 
estimate for vanishing matrix elements) in a fit including higher powers. 

|Vcb | = 42.00(53) × 10−3 Update of 1606.06174
Bordone, Capdevila, PG, 2107.00604still without

 moments!q2



INCLUSIVE DECAYS ON THE LATTICE
Inclusive processes impractical to treat directly on the lattice.  Vacuum current 
correlators computed in euclidean space-time are related to hadrons or  
decay via analyticity. In our case the correlators have to be computed in the B meson, 
but analytic continuation more complicated: two cuts, decay occurs only on a portion 
of the physical cut.

While the lattice calculation of the spectral density of hadronic correlators is an ill-
posed problem, the spectral density is accessible after smearing, as provided by 
phase-space integration Hansen, Meyer, Robaina, Hansen, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

e+e− → τ

• What about hadronic tensor W(%, q)?
• Elastic channel:
• Inelastic thesholds:

Quantum Mechanics in a Box

!19

%

C(%)

M

Physical In a box

%

C(%)

M
W. Jay @Snowmass workshop

needs smearing!
spectral function



A PRACTICAL APPROACH
4-point functions on the lattice are related to the hadronic tensor in euclidean

Hashimoto, PG 2005.13730 

tsrc t1 t2 tsnk

J†
µ Jν

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and Jν are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at sufficiently small ω, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

differential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B → D(∗)"ν channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µν (tsnk, t1, t2, tsrc) =

∑

x

〈

P S(x, tsnk)J̃
†
µ(q, t1)J̃ν(q, t2)P

S†(0, tsrc)
〉

, (14)

where P S is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b → c current

and assumed to carry the spatial momentum projection
∑

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.

10

∼ ⟨B |J†
μ(x, t)Jν(0,0) |B⟩

The necessary smearing is provided by phase space integration over the hadronic energy, which is 
cut by a  with a sharp hedge: sigmoid  can be used to replace kinematic  for .   
Larger number of polynomials needed for small 

θ 1/(1 + ex/σ) θ(x) σ → 0
σ

3

are defined in the range 0  x  1. Their first
few terms are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) =
8x2 � 8x + 1, and others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained by an integral

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among all possible polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function in a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Figure 1 demonstrates how well K(l)

� (!) is approxi-
mated with certain orders of the polynomials, i.e. N = 5,
10 and 20. An example for l = 0 is shown. Here we take
three representative values of �: � = 0.2, 0.1 and 0.05 in
the lattice unit. The comparison is made for parameters
that roughly correspond to our lattice simulation setup:
the inverse lattice spacing 1/a ' 3.61 GeV, amBs ' 1.0,
t0/a = 1. The momentum insertion q is assumed to be
zero. The kernel function is well approximated with rel-
atively low orders of the polynomials, such as N = 10,
when su�ciently smeared, e.g. � = 0.2. For smaller �’s,
the function exhibits a sharp change near the thresh-
old ! = 1.0, and the Chebyshev approximation becomes
poorer. For better approximation, one needs higher or-
der polynomials, like N = 20. Eventually we have to
take the limit of � ! 0, and the error due to finite order
of polynomials has to be estimated. For the other cases,
l = 1 and 2, the polynomial approximations are better
than those for l = 0.

We perform a pilot study of the method described
above using a lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [17], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks only in the valence
sector, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
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FIG. 1. Approximation of the weight function K(l=0)
� (!) with

the Chebyshev polynomials of e�!. For each value of the
smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
�m2

Ds
)/2mBs ' 1.1 GeV. The

lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calculate
the forward-scattering matrix elements with spatial mo-
menta q at (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units of
2⇡/La. The number of lattice configurations averaged is
100, and the measurement is performed with four di↵er-
ent source time-slices.

For a fixed spatial momentum q, we compute a four-

3
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FIG. 1. Approximation of the weight function K
(l=0)
� (!) with

the Chebyshev polynomials of e
�!. For each value of the

smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function over a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Fig. 1 demonstrates how well K(l)

� (!) is approximated
with certain orders of the polynomials, i.e. N = 5, 10
and 20. An example for l = 0 is shown. Here we take
three representative values of �: 0.2, 0.1 and 0.05 in lat-
tice units. The comparison is made for parameters that

roughly correspond to our lattice setup: the inverse lat-
tice spacing 1/a ' 3.61 GeV, amBs ' 1.0, t0/a = 1.
The momentum insertion q is set to zero. The kernel
function is well approximated with relatively low orders
of the polynomials, such as N = 10, when su�ciently
smeared, e.g. � = 0.2. For smaller �’s, the function ex-
hibits a more rapid change near the threshold ! = 1.0,
and one needs higher orders, like N = 20. Eventually we
have to take the limit � ! 0, and the error due to finite
N has to be estimated. For l = 1 and 2 the polynomial
approximations are better than those for l = 0.

We perform a pilot study of the method described
above using lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [21], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks in the valence sec-
tor, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
� m2

Ds
)/2mBs ' 1.16 GeV.

The lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calcu-
late the forward-scattering matrix elements with spatial
momenta q of (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units
of 2⇡/La. The number of lattice configurations averaged
is 100, and the measurement is performed with four dif-
ferent source time-slices.

For a fixed spatial momentum q, we compute a four-
point function to extract CJJ

µ⌫
(t; q) (more details of the

lattice calculation are presented in [9]). We perform the
!-integral (4) using the representation (12). Matrix ele-
ments of the shifted Chebyshev polynomials are obtained
from CJJ

µ⌫
(t+2t0; q)/CJJ

µ⌫
(2t0; q) at various t’s (and t0 =

1) by a fit with constraints |h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i| <

1, which is a necessary condition for the Chebyshev poly-
nomials.

First, we inspect how well the Chebyshev approxima-
tion works by comparing the results for X̄(2) obtained
with the polynomial order N = 5, 10, 15 at various val-
ues of �, the width of the smearing. Fig. 2 shows that the
dependence on � is mild and the limit of � = 0 is already
reached at around � = 0.05. The dependence on N is
not significant, which indicates that the approximation
is already saturated at N ' 10. This is crucial because
the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
(e�Ĥ)| ⌫i/h µ| ⌫i at j ' 10 or

larger. The results for X̄(0) and X̄(1) show the similar
tendency. We take � = 0.05 in the following analysis; the
results are within statistical error even if we extrapolate
to � = 0.

The lattice results for X̄ =
P2

l=0 X̄(l) are compared
with the OPE predictions in Fig. 3 as a function of q2.
Here, the results for di↵erent polarizations, i.e. longi-
tudinal (k: µ, ⌫ = 0 and 3) and perpendicular (?: µ,

lim
σ→0

lim
V→∞

Xσ

Two methods based on
Chebyshev polynomials and 
Backus-Gilbert. Important:

∫ d3x
eiq⋅x

2MB
⟨B |J†

μ(x, t)Jν(0,0) |B⟩ ∼ ∫
∞

0
dωWμνe−tω

dΓ ∼ LμνWμν, Wμν ∼ ∑
X

⟨B |J†
μ |X⟩⟨X |Jν |B⟩

smearing kernel  f(ω) = ∑
n

ane−naω



LATTICE VS OPE mkin

b
(JLQCD) 2.70 ± 0.04

mc(2 GeV) (JLQCD) 1.10 ± 0.02

mkin

b
(ETMC) 2.39 ± 0.08

mc(2 GeV) (ETMC) 1.19 ± 0.04

µ2
⇡ 0.57 ± 0.15

⇢3
D

0.22 ± 0.06

µ2
G
(mb) 0.37 ± 0.10

⇢3
LS

�0.13 ± 0.10

↵(4)
s (2 GeV) 0.301 ± 0.006

Table 1. Inputs for our OPE calculation. All parameters are in GeV at the appropriate power and
all, except mc, in the kinetic scheme at µ = 1 GeV. The heavy-quark masses for the ETMC setup
are 100% correlated. As a remnant of the semileptonic fit, we include a 50% correlation between
µ2
⇡ and ⇢3D.

0.1–0.2 GeV3, they could shift µ2
⇡ and µ2

G
by 0.02–0.1 GeV in going from the physical value

of mb to mb ⇠ 2.5 GeV, which amounts to a 5–25% shift. We show the inputs of our
calculation in table 1. While the heavy-quark masses are slightly different between the two
setups, we adopt the same expectation values in both cases. Their central values take into
account the shift related to the strange spectator, while the uncertainties follow from the
uncertainty of the fit of ref. [68], the SU(3) symmetry breaking, and the lower b mass.

Beside the parametric uncertainty of the inputs, our results are subject to an uncer-
tainty due the truncation of the expansion in eq. (4.1) and to possible violations of quark-
hadron duality. We estimate the former by varying the OPE parameters, the heavy-quark
masses, and ↵s in an uncorrelated way and adding the relative uncertainties in quadrature.
In particular, we shift mb,c by 6 MeV, µ2

⇡,G
by 15%, and ⇢3

D,LS
by 25%. These corrections

should mimic the effect of higher-power corrections. Since in the case of the q2 spectrum
and differential moments we restrict ourselves to O(↵s) corrections, we include the relative
uncertainty in the same way, shifting ↵s by 0.15, which corresponds to a 50% uncertainty.
In the case of the total width and total moments, higher-order perturbative corrections are
known and the perturbative uncertainty can be reduced, as discussed below.

4.2 Comparison with lattice results

4.2.1 q2 spectrum and differential moments

We start our comparison of lattice and OPE results with the q2 spectrum and the differential
moments introduced in eq. (2.39) and in eq. (2.40). Only the O(↵s) perturbative corrections
are included in this case. Figure 14 shows the q2 spectrum in the SM, namely with a V �A

current. Despite the large uncertainty of the OPE prediction, about 30% in the JLQCD
case and 50% in the ETMC case, the overall agreement is good. The OPE uncertainty is
dominated by the power corrections. We also stress that close to the partonic endpoint,
corresponding to 1.27 GeV2 and 0.82 GeV2 in the two cases, we do not expect the OPE
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Figure 14. Differential q2 spectrum, divided by |q|, in the SM. Comparison of OPE with JLQCD
(top panel) and ETMC (bottom panel) data are shown.

calculation to be reliable, as discussed above. The corresponding hadronic endpoints are
1.35 GeV2 and 0.75 GeV2, respectively.

The uncertainties affecting both calculations can be greatly reduced by considering
the differential moments. In particular, the OPE uncertainty becomes smaller because of
the cancellations between power corrections to the numerator and to the denominator. To
expose the cancellations we expand the ratios in powers of ↵s and 1/mb. In figure 15 we
show the first differential lepton energy moment, L1(q2), in the SM, comparing the OPE
with ETMC data. As expected, the relative uncertainty of both the OPE calculation and
of the lattice data is much smaller than in the bottom panel of figure 14 and we observe
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Twisted boundary conditions allow
for any value of  
Smaller statistical uncertainties

⃗q2

OPE inputs from fits to exp data (physical 
mb), HQE of meson masses on lattice
             1704.06105, J.Phys.Conf.Ser. 1137 (2019) 1, 012005

We include  and  terms

Hard scale 
We do not expect OPE to work at high

O(1/m3
b) O(αs)

m2
c + q2 ∼ 1−1.5 GeV

|q |

ETMC twisted mass

JLQCD domain wall fermions

PG, Hashimoto, Maechler, Panero, Sanfilippo, Simula, Smecca, Tantalo, 2203.11762

https://arxiv.org/abs/1704.06105
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Figure 19. Differential moment L1(q2) in the various channels. The plots show the comparison
between OPE and ETMC data.

Figure 20. Differential moment L2c = L2 � L2
1 in the various channels. The plots show the

comparison between OPE and ETMC data.
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L1 = ⟨Eℓ(q2)⟩

smaller errors, cleaner comparison with OPE, individual channels AA, VV, parallel 
and perpendicular polarization, could help extracting its parameters

PG, Hashimoto, Maechler, Panero, Sanfilippo, Simula, Smecca, Tantalo, 2203.11762
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First results at the physical b mass
Relativistic heavy quark
effective action for b

Bs decays,
domain wall fermions,

improved implementation
of Chebychev polynomials

and Backus-Gilbert

qualitative study
~5% statistical uncertainty

 on total width

possibly better to compare
 with partial width at low ⃗q2

Ongoing work on semileptonic Ds decays by two 
collaborations

Figure 11. Estimate of X̄(q2) with the two different strategies for 10 different q2 with N = 9 and
q2
max = 5.86 GeV2.
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Figure 12. Contributions to X̄(q) from the Chebyshev-polynomial approach at N = 9 and !0 =
0.9!min with associated error bars. The black triangles correspond to the final value X̄(q2) =P2

l=0

P
{µ,⌫} X̄(l)

µ⌫ (q2). The solid black lines separate the contributions from l = 0 (bottom), l = 1
(middle) and l = 2 (top).

channel X̄(2)

AiAi
as it is the one responsible for the largest contribution. The plot is shown

in Fig. 15. We can see that for small q2 the value of X̄(q) is stable, which implies that
statistical and systematic errors are well balanced. For larger q2 the situation is more
delicate: this can be understood in terms of the reduced phase space in !, as shown for
example in Fig. 10. A first attempt at mitigating the induced systematic effect could
be to identify the region where the two Backus-Gilbert approaches with different bases are
consistent, to identify (where possible) a plateau, and to estimate a value inside such region.
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CONCLUSIONS

Inclusive  is robust:  moments consistent with leptonic and hadronic 
ones;  effects show perturbation theory OK; higher powers appear small. 
But don’t dream of going below 1%…

Calculations of inclusive semileptonic meson decays on the lattice have 
started. Will they reach a competing precision? Certainly they will validate 
and complement the OPE approach

Precision physics may look like a Sisyphus’ effort… but it’s become the 
main avenue to search for New Physics. It has to be done with care and 
passion, following Marco’s example

b → c q2

O(α3
s )



Auguri Marco!


