Step limit optimization inside the final focus

Alejandro Pérez INFN – Sezione di Pisa

SEZIONE DI PISA

Outline

Step limit optimization

- Step limit vs Beam optics
- Step limit vs Rad-Bhabha losses at beam pipes
- Step limit vs Rad-Bhabha rates on final focus boundary
- Summary

Step limit optimization strategy

- Current default value of step limit (SL) parameter is 8mm
- Current final focus model: ±16m from IP
 - ⇒ execution time high (~25 mins/bunch-crossing)
- Want to optimize SL parameter, a trade-off between
 - Reasonable simulation results \Rightarrow SL as small as possible
 - Smallest execution time \Rightarrow SL as big as possible

Strategy:

- SL scan: 8, 16, 32 and 64 mm
- Check if simulation performances are similar for different SL values
 - Beam optics sampling
 - Losses rate (at beam pipes) of Rad-Bhabha
 - Rad-Bhabha rates at final focus boundaries
- Choose the highest SL value which gives reasonable results

SL vs Beam optics: Strategy

- Use final focus v12 sf11 layout
- Generate particles (20k) with HER beam parameters at the IP:
 - All particles are generated at Z = 0 and at the nominal beam energy

- Feed this particles into Bruno which transport them through the FF B-field
- Scoring cylinders to study beam optics as a function of Z-coordinate
- Simulate for different SL values: 8, 16, 32 and 64 mm
- Check if different step limit values give similar beam parameters vs Z: <X>,
 <Y>, σ(X), σ(Y), ...
- Estimate execution time vs SL

SL vs Beam optics: Results (I)

SL vs Beam optics: Results (II)

SL vs Beam optics: Results (III)

SL vs Beam optics: Summary

- Very similar results for SL values 8, 16 and 32 mm (differences below 1%)
- SL = 64 mm seems to be too high value discarded

SL vs Rad-BhaBha Losses: Strategy

- Run Bruno with the final focus only (Rad-BhaBha generator)
- Remove everything (magnets, flanges, Plug ...) but beam pipes
- Replace beam pipes material with vacuum
- Simulate for different SL values:
 8, 16 and 32 mm
- Evaluate losses rates as a function of Z-coordinate for different:
 - Particle type: e^- , e^+ and γ
 - Energy bins
 - Transversal energy bins
- Compare results for the different SL values

SL vs Rad-BhaBha Losses: Results (I)

SL vs Rad-BhaBha Losses: Results (II)

SL vs Rad-BhaBha Losses: Results (III)

Alejandro Pérez, Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha Losses: Results (IV)

SL vs Rad-BhaBha Losses: Results (V)

Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha Losses: Summary

 Similar results for other Z-ranges and for the other particles types (electrons and gammas). See links,

Positrons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadB haBhaLosses/Comparing_Losses_HER_Different_StepLimits.eps

Electrons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadB haBhaLosses/Comparing_Losses_LER_Different_StepLimits.eps

Photons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadBh aBhaLosses/Comparing_Losses_Gamma_Different_StepLimits.eps

Results for SL = 8, 16 and 32 mm in agreement within 10%

SL vs Rad-BhaBha rates at FF: Strategy

- Run Bruno with the final focus only (Rad-BhaBha generator)
- Use nominal final focus geometry

- Simulate for different SL values:
 8, 16 and 32 mm
- Evaluate rates at final focus
 Boundary as a function of
 Z-coordinate for different:
 - Particle types: e^- , e^+ , γ and n^0
 - Energy bins
 - Transversal energy bins
- Compare results for different SL values

SL vs Rad-BhaBha rates at FF: Results (I)

Alejandro Pérez, Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha rates at FF: Results (II)

SL vs Rad-BhaBha rates at FF: Results (III)

SL vs Rad-BhaBha rates at FF: Results (IV)

Alejandro Pérez, Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha rates at FF: Results (V)

Alejandro Pérez, Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha rates at FF: Results (VI)

Rate [MHz] / (5.0 cm)

Alejandro Pérez, Background meeting, Oct. 19th 2011

SL vs Rad-BhaBha rates at FF: Results (VII)

SL vs Rad-BhaBha rates at FF: Results (VIII)

Step limit vs Rad-BhaBha rates at FF Summary

Similar results for other Z-ranges and for the other particles types (electrons and gammas). See links,

Positrons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadB haBhaFFBoundary/Comparing_FF_boundary_posi_Different_StepLimits.eps

Electrons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadB haBhaFFBoundary/Comparing_FF_boundary_elec_Different_StepLimits.eps

Photons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadBh aBhaFFBoundary/Comparing_FF_boundary_Gamma_Different_StepLimits.eps

Neutrons:http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/StepLimit_Studies/RadB haBhaFFBoundary/Comparing_FF_boundary_Neutron_Different_StepLimits.eps

Results for SL = 8, 16 and 32 mm in agreement within 10%

Summary

- Step limit optimization studies performed
- Studies point to use SL = 32mm
 - Negligible effect on beam parameters
 - Small effect (less than 10%) on Rad-bhabha losses and rates at FF boundary
 - Can reduce execution time by a factor of 2 w.r.t SL = 8mm
- Will set-up the nominal value of SL inside the final focus to 32mm

Alejandro Pérez, Background meeting, Oct. 19th 2011