Young Gammas Meeting 21 June 2024 Osservatorio Astronomico, Asiago

Characterization of new scintillator detectors for high-energy gamma-ray measurements

A. Giaz, INFN Sezione di Milano

Outline

- Introduction: why scintillators?
- R&D on Scintillators
 - PARIS SiPM readout
 - CLYC: fast neutron detection
- Measurements of collective motions in nuclei with scintillators
 - Isospin mixing in $^{72}\mathrm{Kr}$
 - ISGQR in ¹²⁰Sn
 - PDR in ⁵⁸Ni and ⁶²Ni

Why scintillators?

Large-volume scintillator detector arrays (**PARIS array**, **HECTOR+**, **CLYC array**?) are especially used in nuclear physics experiments for high-energy γ -ray measurements.

Main scintillator detector characteristics:

- 1. High Efficiency (high Z_{eff} and ρ);
- 2. Energy Resolution from 2.7% @ 662 keV;
- 3. Time Resolution < 1 ns;
- 4. Linearity for high-energy γ -rays;
- 5. Possibility to discriminate between gamma and neutrons.

R&D on Scintillators

PARIS SiPM readout

SiPM vs PMT

Advantages:

- Non sensitive to magnetic field
- No need of HV
- Mecchanical Compactness
- Single photon sensitivity

Disadvantages:

• Large area

Advantages:

- Low DCR
- Large area
- Possibility of UV sensitivity

Disadvantages:

- Sensitivity to magnetic field
- Need of HV

Readout electronics used for SensL SiPMs:

Readout electronics used for SensL SiPMs:

1. SensL evaluation board

Readout electronics used for SensL SiPMs:

- 1. SensL evaluation board
- 2. SensL evaluation board + Amplification + Pole Zero (PZ)

Readout electronics used for SensL SiPMs:

- 1. SensL evaluation board
- 2. SensL evaluation board + Amplification + Pole Zero (PZ)
- 3. Custom electronics

31

Readout electronics used for SensL SiPMs:

- 1. SensL evaluation board
- 2. SensL evaluation board + Amplification + Pole Zero (PZ)
- 3. Custom electronics

PARIS: SiPMs (I)

	PMT R13080-100	SiPM SensL
QE / PDE	38 %	44% (FF 75%)
Size	20.27 cm ²	5 x 5 cm ²

Predictable non-linearity

It depends on the number of **SiPM cells** their **PDE** and the number of photons emitted by the detector.

PARIS: SiPMs (II)

SiPMs are not sensible to magnetic field.

Time resolution

R&D on Scintillators

CLYC: fast neutron detection

Cs₂LiYCl₆:Ce to detect neutron:

- ⁶Li thermal neutrons ($\sigma \approx 960$ barns)
- ³⁵Cl fast neutrons
 - ${}^{35}Cl(n,p)35S$
 - ${}^{35}Cl(n, \alpha){}^{32}P$

Cs₂LiYCl₆:Ce to detect neutron:

- ⁶Li thermal neutrons ($\sigma \approx 960$ barns)
- ³⁵Cl fast neutrons
 - ${}^{35}Cl(n,p)35S$
 - ${}^{35}Cl(n, \alpha){}^{32}P$

Cs₂LiYCl₆:Ce to detect neutron:

- ⁶Li thermal neutrons ($\sigma \approx 960$ barns)
- ³⁵Cl fast neutrons
 - ${}^{35}Cl(n,p)35S$

• ${}^{35}Cl(n, \alpha){}^{32}P$

Cs₂LiYCl₆:Ce to detect neutron:

- ⁶Li thermal neutrons ($\sigma \approx 960$ barns)
- ³⁵Cl fast neutrons
 - ${}^{35}Cl(n,p)35S$

• ${}^{35}Cl(n, \alpha){}^{32}P$

Energy [keV]

LaBr₃:Ce 63000 ph/MeV – CLYC 20000 ph/MeV LaBr₃:Ce 150 ns – CLYC 10 μs

LaBr₃:Ce 63000 ph/MeV – CLYC 20000 ph/MeV LaBr₃:Ce 150 ns – CLYC 10 μs

Photon with CLYC @ 1332 keV: **5000 ph** (*LY*×*PDE*×*FF*×*other*?)

DCR in 10 µs at 21°C: 50 ph (1%)

LaBr₃:Ce 63000 ph/MeV – CLYC 20000 ph/MeV LaBr₃:Ce 150 ns – CLYC 10 μs

Photon with CLYC @ 1332 keV: **5000 ph** (*LY*×*PDE*×*FF*×*other*?)

DCR in 10 µs at 21°C: 50 ph (1%)

FHWM @ 662 = 30 keV (4.5%) FWHM @ 1332 keV = 43 keV Measured Noise FWHM = 72 keV

20

LaBr₃:Ce 63000 ph/MeV – CLYC 20000 ph/MeV LaBr₃:Ce 150 ns – CLYC 10 μs

Photon with CLYC @ 1332 keV: **5000 ph** (*LY*×*PDE*×*FF*×*other*?)

DCR in 10 µs at 21°C: 50 ph (1%)

FHWM (a) 662 = 30 keV (4.5%)FWHM (a) 1332 keV = 43 keV Measured **Noise FWHM = 72 keV** $FWHM_{noise}^2 + FWHM_{1332}^2$ $FWHM_{Expected} = \sqrt{}$ 4 keV 180 CLYC energy Spectrum 160 Noise Spectrum 140 120 FWHM = 00 Counts 80 FWHM = 72 keV 80 keV 60 40 20 500 1000 1500 0 21 Energy [keV]

CLYC: efficinecy

Detector	Detected neutrons	Measured Ratio	Simulated Ratio
1" x 1"	$0.19\pm0.01~\text{n/s}$	1.00 ± 0.07	1.00
2" x 2"	$1.21 \pm 0.01 \text{ n/s}$	6.53 ± 0.60	6.71
3" x 3"	$3.46 \pm 0.03 \text{ n/s}$	18.78 ± 0.36	19.43

Measurements of collective motions in nuclei with scintillators

Isospin mixing in ⁷²Kr

Isospin Mixing

In N=Z nuclei with isospin equal zero E1 γ -ray emission is forbidden by selection rules. The isospin symmetry is broken by Coulomb

force. 10-2 Divided data Data **Divided CASCADE no mixing** CASCADE no mixing Divided CASCADE $\Gamma^{\downarrow} = 10 \text{ keV}$ 10⁻³ CASCADE Γ^{\downarrow} =12 keV 10 Divided CASCADE large mixing CASCADE large mixing A. Corsi 10-4 8 et al., PRC 84, a.u. € 10⁻⁵ 041304(R) 6 (2011) 10⁻⁶ 10-7 $^{40}Ca + ^{40}Ca \Rightarrow ^{80}Zr^*$ E* = 83 MeV 10-8 20 25 30 15 15 20 25 10 10 5 E (MeV) E (MeV)

Isospin Mixing

In N=Z nuclei with isospin equal zero E1 γ -ray emission is forbidden by selection rules. The isospin symmetry is broken by Coulomb

force. 10-2 Divided data Data **Divided CASCADE no mixing** CASCADE no mixing Divided CASCADE $\Gamma^{\downarrow} = 10 \text{ keV}$ 10⁻³ CASCADE Γ^{\downarrow} =12 keV 10 Divided CASCADE large mixing CASCADE large mixing A. Corsi 10-4 8 et al., PRC 84, a.u. € 10⁻⁵ 041304(R) 6 (2011) 10⁻⁶ 10-7 $^{40}Ca + ^{40}Ca \Rightarrow ^{80}Zr^*$ E* = 83 MeV 10-8 20 25 30 15 15 20 25 10 10 5 E (MeV) E (MeV)

Isospin mixing in ⁷²Kr at T=1.3 MeV

Bucharest: ELIGANT setup

Isospin mixing in ⁷²Kr at T=1.3 MeV

Bucharest: ELIGANT setup

PDR in A~60 and ISGQR in A=120 mass regions (I)

Collective response of nuclei of external excitation

Collective oscillation of neutron skin against the core

Why Pygmy?

- impact on the **r-process nucleosynthesis**;
- determination of nuclear symmetry energy;
- neutron skin thickness determination.

Measurements of collective motions in nuclei with scintillators

ISGQR in ¹²⁰Sn

PDR in ⁵⁸Ni and ⁶²Ni

PDR in A~60 and ISGQR in A=120 mass regions (II) Iso Scalar Giant Quadrupole Resonance

Search of ISGQR in ¹²⁰Sn

Search of ISGQR in ¹²⁰Sn

Search of ISGQR in ¹²⁰Sn

Pygmy in Ni isotopes

Conclusion

- R&D on Scintillators
 - **PARIS SiPM readout**: energy and time resolution comparable with the one with PMTs, predictable non-linearity, SiPM are not sensitive to magnetic field
 - CLYC: low fast neutron detection efficiency, issues with SiPM readout
- Measurements of collective motions in nuclei with scintillators
 - Isospin mixing in ⁷²Kr: data confirm the theory
 - ISGQR in ¹²⁰Sn: analysis ongoing
 - PDR in ⁵⁸Ni and ⁶²Ni: analysis ongoing